Thermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model
نویسندگان
چکیده مقاله:
The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency shift of modified couple stress dual-phase-lag thermoelastic plate have been obtained. A computer algorithm has been constructed to obtain the numerical results. Influences of modified couple stress dual-phase-lag thermoelastic plate, dual- phase-lag thermoelastic plate and Lord-Shulman (L-S, 1967) thermoelastic plate with few vibration modes on the thermoelastic damping and frequency shift are examined. The thermoelastic damping and frequency shift with varying values of length and thickness are shown graphically for clamped-clamped and simply-supported boundary conditions. It is observed from the results that the damping factor and frequency shift have noticed larger value in the presence of couple stress for varying values of length but opposite effect are shown for varying values of thickness in case of both vibration modes and boundary conditions.
منابع مشابه
Damping and Frequency Shift in Microscale Modified Couple Stress Thermoelastic Plate Resonators
In this paper, the vibrations of thin plate in modified couple stress thermoelastic medium by using Kirchhoff- Love plate theory has been investigated. The governing equations of motion and heat conduction equation for Lord Shulman (L-S) [1] theory are written with the help of Kirchhoff- Love plate theory. The thermoelastic damping of micro-beam resonators is analyzed by using the normal mode a...
متن کاملA FSDT model for vibration analysis of Nano rectangular FG plate based on Modified Couple Stress Theory under moving load
In present paper, vibration of Nano FGM plate based on modified couple stress and First Order Shear Deformation Theories (FSDT) under moving load has been developed. Basic equations and linear strains are introduced by first order shear deformation theory and Mori Tanaka’s model is used for the plate. The module of elasticity and density are assumed to vary only through thickness of plate. Gove...
متن کاملAxisymmetric Problem of Thick Circular Plate with Heat Sources in Modified Couple Stress Theory
The main aim is to study the two dimensional axisymmetric problem of thick circular plate in modified couple stress theory with heat and mass diffusive sources. The thermoelastic theories with mass diffusion developed by Sherief et al. [1] and kumar and Kansal [2] have been used to investigate the problem. Laplace and Hankel transforms technique is applied to obtain the solutions of the governi...
متن کاملThermo-elastic Damping in a Capacitive Micro-beam Resonator Considering Hyperbolic Heat Conduction Model and Modified Couple Stress Theory
In this paper, the quality factor of thermo-elastic damping in an electro-statically deflected micro-beam resonator has been investigated. The thermo-elastic coupled equations for the deflected micro-beam have been derived using variational and Hamilton principles based on modified couple stress theory and hyperbolic heat conduction model. The thermo-elastic damping has been obtained discretizi...
متن کاملBuckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
The present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is ...
متن کاملGeometric effects on thermoelastic damping in MEMS resonators
The effects of geometry on the energy dissipation induced by thermoelastic damping in MEMS resonators are investigated numerically using a finite element formulation. The perturbation analysis is applied to derive a linear eigenvalue equation for the exponentially decaying rate of the mechanical oscillation. The analysis also involves a Fourier method that reduces the dimensionality of the prob...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 12 شماره 3
صفحات 700- 712
تاریخ انتشار 2020-09-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023