Thermal Performance of Jet Impingement with Spent Flow Management

نویسندگان

  • Afzal Husain Mechanical and Industrial Engineering, Sultan Qaboos University
  • Mohd Ariz Mechanical and Industrial Engineering, Sultan Qaboos University
چکیده مقاله:

The present study proposes novel micro-jet impingement heat sink with effusion holes for flow extraction. The design consists of impingement nozzles surrounded by multiple effusion holes to take away the spent fluid. A three-dimensional numerical model is used for steady, incompressible, laminar flow and conjugate heat transfer for the performance analysis of the proposed design. The computational domain is defined by applying symmetric boundary conditions around a unit cell of the jet impingements and effusion holes. The effect of several design parameters, viz., jet diameter, effusion-hole diameter, stand-off and the jet-to-effusion pitch is investigated. A higher standoff-to-jet diameter ratio exhibited lower thermal resistance whereas lower standoff-to-jet diameter ratio exhibited lower pressure-drop. Smaller jet-to-effusion hole spacing resulted in minimum temperature-rise along with maximum total pressure-drop and heat transfer coefficients.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal-hydraulic performance of convective boiling jet array impingement

jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7 o C. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The result...

متن کامل

Effects of jet pattern on two-phase performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme

This paper explores the two-phase cooling performance of a hybrid cooling scheme in which a linear array of micro-jets deposits liquid gradually along each channel of a micro-channel heat sink. The study also examines the benefits of utilizing differently sized jets along the micro-channel. Three micro-jet patterns, decreasing-jet-size (relative to center of channel), equal-jet-size and increas...

متن کامل

Effects of jet pattern on single-phase cooling performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme

This study explores the single-phase cooling performance of a hybrid cooling module in which a series of micro-jets deposit coolant into each channel of a micro-channel heat sink. This creates symmetrical flow in each micro-channel, and the coolant is expelled through both ends of the micro-channel. Three micro-jet patterns are examined, decreasing-jet-size (relative to center of channel), equa...

متن کامل

Verification of Thermal Performance Predictions of Prototypical Multi-jet Impingement Helium-cooled Divertor Module

An experimental investigation of the thermal performance of the He-Cooled Multi-Jet (HEMJ) modular divertor design developed by the Karlsruhe Research Center (FZK) was previously performed at Georgia Tech using air at Reynolds numbers (Re) spanning those at which the actual He-cooled divertor is to be operated. The electrically heated test section was constructed from a brass alloy with nearly ...

متن کامل

Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the ...

متن کامل

LDA Experimental Data of Three-Poster Jet Impingement System

During its near-ground hovering phase a Short Take-Off and Vertical Landing (STOVL) aircraft creates a complex three-dimensional flow field between jet streams, the airframe surface and the ground. A proper understanding and numerical prediction of this flow is important in the design of such aircraft. In this paper an experimental facility, used to gather validation data suitable for testing C...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 30  شماره 10

صفحات  1599- 1608

تاریخ انتشار 2017-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023