Thermal and electrical conductivity of Aluminium Nitride nanofluids
نویسندگان
چکیده مقاله:
This study was designed to experimentally measure the thermal and electrical conductivities of Aluminium Nitride/Ethylene Glycol (AlN/EG) nanofluids. Transmission electron microscopy (TEM) was used to characterize the shape of AlN nanoparticles. Nanofluids with different particle volume concentrations of 0.5%, 1%, 2%, 3%, 4%, and 5% were utilized. The thermal and electrical conductivities of the nanofluids were measured using a KD2-Pro thermal analyser and electrical conductivity meter, respectively. The obtained results revealed that the thermal conductivity of the nanofluids increased at the higher volume concentration of the nanoparticles. Thus, at 5% volume concentration, the maximum thermal conductivity enhancement of 25% was obtained. The addition of AlN nanoparticles to the EG base fluid resulted in a significant increase in the electrical conductivity of the nanofluid. An enhancement in the electrical conductivity of approximately 520 times relative to the base fluid was attained by loading a 0.5% volume concentration of AlN in EG at 28°C.
منابع مشابه
Electrical conductivity of CuO nanofluids
An empirical electrical conductivity assessment of nanofluids comprising CuO nanoparticles water-based in different concentrations, particles size and various temperatures of nanofluids has been carried out in this paper. These experimentations have been done in deionized water with nanoparticles sizes such as 89, 95, 100 and 112 nm and concentrations of 0.12 g/l, 0.14 g/l, 0.16 g/l and 0.18 g/...
متن کاملElectrical conductivity of CuO nanofluids
An empirical electrical conductivity assessment of nanofluids comprising CuO nanoparticles water-based in different concentrations, particles size and various temperatures of nanofluids has been carried out in this paper. These experimentations have been done in deionized water with nanoparticles sizes such as 89, 95, 100 and 112 nm and concentrations of 0.12 g/l, 0.14 g/l, 0.16 g/l and 0.18 g/...
متن کاملThermal Conductivity of Nanofluids
Nanofluids are suspensions of nanoparticles in base fluids, a new challenge for thermal sciences provided by nanotechnology. Nanofluids have unique features different from conventional solid-liquid mixtures in which mm or μm sized particles of metals and non-metals are dispersed. Due to their excellent characteristics, nanofluids find wide applications in enhancing heat transfer. Research work ...
متن کاملelectrical conductivity of cuo nanofluids
an empirical electrical conductivity assessment of nanofluids comprising cuo nanoparticles water-based in different concentrations, particles size and various temperatures of nanofluids has been carried out in this paper. these experimentations have been done in deionized water with nanoparticles sizes such as 89, 95, 100 and 112 nm and concentrations of 0.12 g/l, 0.14 g/l, 0.16 g/l and 0.18 g/...
متن کاملThermal Conductivity of Cu and Al-Water Nanofluids
Nanofluids are suspensions of nanoparticles in the base fluids, a new challenge for thermal sciences provided by nanotechnology. In this paper, the tested fluids are prepared by dispersing the Al and Cu into water at three different concentrations such as 500, 1000 and 2000 ppm. Thermal conductivities of these fluids are measured experimentally by thermal property analyzer i.e. KD2 Pro by using...
متن کاملToward nanofluids of ultra-high thermal conductivity
The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of superior conductivity depends thus very much on our understanding and manipulation of the morphology and the coupled transport. Nanofl...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 11 شماره 1
صفحات 1- 11
تاریخ انتشار 2020-01-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023