THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

نویسندگان

  • A. Zeydi Abdian Department of Mathematical Sciences, Lorestan University, Lorestan, Khoramabad, Iran.
  • Gh. H. Fath-Tabar Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, Iran.
چکیده مقاله:

The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless Laplacian spectrum.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

signless laplacian spectral moments of graphs and ordering some graphs with respect to them

let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $a(g)$ the adjacency matrix of $g$. the  signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of  graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Graphs determined by their (signless) Laplacian spectra

Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.

متن کامل

Some Graphs Determined by Their (signless) Laplacian Spectra

Let Wn = K1 ∨ Cn−1 be the wheel graph on n vertices, and let S(n, c, k) be the graph on n vertices obtained by attaching n− 2c− 2k − 1 pendant edges together with k hanging paths of length two at vertex v0, where v0 is the unique common vertex of c triangles. In this paper we show that S(n, c, k) (c > 1, k > 1) and Wn are determined by their signless Laplacian spectra, respectively. Moreover, w...

متن کامل

Ela Graphs Determined by Their (signless) Laplacian Spectra

Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 2

صفحات  131- 141

تاریخ انتشار 2020-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023