The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

نویسندگان

  • Abbas Saadatmandi Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, 87317-51167, Iran
  • Mohammadreza Ahmadi Darani Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran
چکیده مقاله:

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the solution of a system of algebraic equations. Several numerical examples are given to illustrate the accuracy of our method. The results obtained, are in full agreement with the analytical solutions and numerical results presented by some previous works.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the operational matrix of fractional derivative of the fractional-order chebyshev functions and its applications

in this paper, we introduce a family of fractional-order chebyshev functions based on the classical chebyshev polynomials. we calculate and derive the operational matrix of derivative of fractional order $gamma$ in the caputo sense using the fractional-order chebyshev functions. this matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

The operational matrix of fractional derivative of the fractional- order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order γ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the soluti...

متن کامل

Study on multi-order fractional differential equations via operational matrix of hybrid basis functions

In this paper we apply hybrid functions of general block-pulse‎ ‎functions and Legendre polynomials for solving linear and‎ ‎nonlinear multi-order fractional differential equations (FDEs)‎. ‎Our approach is based on incorporating operational matrices of‎ ‎FDEs with hybrid functions that reduces the FDEs problems to‎ ‎the solution of algebraic systems‎. ‎Error estimate that verifies a‎ ‎converge...

متن کامل

the survey of the virtual higher education in iran and the ways of its development and improvement

این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.

Numerical solution of Bagley-Torvik equation using Chebyshev wavelet operational matrix of fractional derivative

In this paper Chebyshev wavelet and their properties are employed for deriving Chebyshev wavelet operational matrix of fractional derivatives and a general procedure for forming this matrix is introduced. Then Chebyshev wavelet expansion along with this operational matrix are used for numerical solution of Bagley-Torvik boundary value problems. The error analysis and convergence properties of t...

متن کامل

Numerical Solution of Nonlinear Multi-order Fractional Differential Equations by Implementation of the Operational Matrix of Fractional Derivative

The main aim of this article is to generalize the Legendre operational matrix to the fractional derivatives and implemented it to solve the nonlinear multi-order fractional differential equations. In this approach, a truncated Legendre series together with the Legendre operational matrix of fractional derivatives are used. The main characteristic behind the approach using this technique is that...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 1

صفحات  67- 87

تاریخ انتشار 2017-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023