The locating-chromatic number for Halin graphs

نویسندگان

  • D. Suprijanto Institut Teknologi Bandung
  • H. Assiyatun Institut Teknologi Bandung
  • I.A. Purwasih Institut Teknologi Bandung
چکیده مقاله:

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locating coloringof G. The locating-chromatic number of G, denoted by χL(G), is the least number k such that Gadmits a locating coloring with k colors. In this paper, we determine the locating-chromatic numberof Halin graphs. We also give the locating-chromatic number of Halin graphs of double stars.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

Oriented chromatic number of Halin graphs

Oriented chromatic number of an oriented graph G is the minimum order of an oriented graph H such that G admits a homomorphism to H . The oriented chromatic number of an unoriented graph G is the maximal chromatic number over all possible orientations of G. In this paper, we prove that every Halin graph has oriented chromatic number at most 8, improving a previous bound by Hosseini Dolama and S...

متن کامل

the locating chromatic number of the join of graphs

‎let $f$ be a proper $k$-coloring of a connected graph $g$ and‎ ‎$pi=(v_1,v_2,ldots,v_k)$ be an ordered partition of $v(g)$ into‎ ‎the resulting color classes‎. ‎for a vertex $v$ of $g$‎, ‎the color‎ ‎code of $v$ with respect to $pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_pi}(v)=(d(v,v_1),d(v,v_2),ldots,d(v,v_k))$‎, ‎where $d(v,v_i)=min{d(v,x):~xin v_i}‎, ‎1leq ileq k$‎. ‎if‎ ‎distinct...

متن کامل

The Locating-chromatic Number of Disconnected Graphs

The paper generalizes the notion of locating-chromatic number of a graph such that it can be applied to disconnected graphs as well. In this sense, not all the graphs will have finite locating-chromatic numbers. We derive conditions under which a graph has a finite locating-chromatic number. In particular, we determine the locatingchromatic number of a uniform linear forest, namely a disjoint u...

متن کامل

On the oriented chromatic number of Halin graphs

An oriented k-coloring of an oriented graph G is a mapping c : V (G) → {1, 2, . . . , k} such that (i) if xy ∈ E(G) then c(x) 6= c(y) and (ii) if xy, zt ∈ E(G) then c(x) = c(t) =⇒ c(y) 6= c(z). The oriented chromatic number ~ χ(G) of an oriented graph G is defined as the smallest k such that G admits an oriented k-coloring. We prove in this paper that every Halin graph has oriented chromatic nu...

متن کامل

The strong chromatic index of Halin graphs

The Strong Chromatic Index of Halin Graphs By Ziyu Hu A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if they have adjacent endpoints. The strong chromatic index of a graph G, denoted by χs(G), is the minimum number of colors needed for a strong edge coloring of G. A Halin graph G is a planar graph constructed...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 1

صفحات  1- 9

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023