The generalized total graph of modules respect to proper submodules over commutative rings.
نویسندگان
چکیده مقاله:
Let $M$ be a module over a commutative ring $R$ and let $N$ be a proper submodule of $M$. The total graph of $M$ over $R$ with respect to $N$, denoted by $T(Gamma_{N}(M))$, have been introduced and studied in [2]. In this paper, A generalization of the total graph $T(Gamma_{N}(M))$, denoted by $T(Gamma_{N,I}(M))$ is presented, where $I$ is an ideal of $R$. It is the graph with all elements of $M$ as vertices, and for distinct $m,nin M$, the vertices $m$ and $n$ are adjacent if and only if $m+nin M(N,I)$, where $M(N,I)={min M : rmin N+IM for some rin R-I}$. The main purpose of this paper is to extend the definitions and properties given in [2] and [12] to a more general case.
منابع مشابه
the generalized total graph of modules respect to proper submodules over commutative rings.
let $m$ be a module over a commutative ring $r$ and let $n$ be a proper submodule of $m$. the total graph of $m$ over $r$ with respect to $n$, denoted by $t(gamma_{n}(m))$, have been introduced and studied in [2]. in this paper, a generalization of the total graph $t(gamma_{n}(m))$, denoted by $t(gamma_{n,i}(m))$ is presented, where $i$ is an ideal of $r$. it is the graph with all elements of $...
متن کاملThe total graph of a commutative semiring with respect to proper ideals
Let $I$ be a proper ideal of a commutative semiring $R$ and let $P(I)$ be the set of all elements of $R$ that are not prime to $I$. In this paper, we investigate the total graph of $R$ with respect to $I$, denoted by $T(Gamma_{I} (R))$. It is the (undirected) graph with elements of $R$ as vertices, and for distinct $x, y in R$, the vertices $x$ and $y$ are adjacent if and only if $x + y in P(I)...
متن کاملOn 2-absorbing Primary Submodules of Modules over Commutative Rings
All rings are commutative with 1 6= 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a, b ∈ R and m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ...
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملthe total graph of a commutative semiring with respect to proper ideals
let $i$ be a proper ideal of a commutative semiring $r$ and let $p(i)$ be the set of all elements of $r$ that are not prime to $i$. in this paper, we investigate the total graph of $r$ with respect to $i$, denoted by $t(gamma_{i} (r))$. it is the (undirected) graph with elements of $r$ as vertices, and for distinct $x, y in r$, the vertices $x$ and $y$ are adjacent if and only if $x + y in p(i)...
متن کاملNONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 27- 42
تاریخ انتشار 2014-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023