The Combined Reproducing Kernel Method and Taylor Series for Handling Fractional Differential Equations
نویسندگان
چکیده مقاله:
This paper presents the numerical solution for a class of fractional differential equations. The fractional derivatives are described in the Caputo cite{1} sense. We developed a reproducing kernel method (RKM) to solve fractional differential equations in reproducing kernel Hilbert space. This method cannot be used directly to solve these equations, so an equivalent transformation is made by using Taylor series. Some numerical examples are studied to demonstrate the accuracy of the given method.
منابع مشابه
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملthe combined reproducing kernel method and taylor series for solving nonlinear volterra-fredholm integro-differential equations
in this letter, the numerical scheme of nonlinear volterra-fredholm integro-differential equations is proposed in a reproducing kernel hilbert space (rkhs). the method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. the nonlinear terms are replaced by its taylor series. in this technique, the nonlinear volterra-fredholm integr...
متن کاملSolving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method
The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملA new technique for solving Fredholm integro-differential equations using the reproducing kernel method
This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.Th...
متن کاملA Reproducing Kernel Hilbert Space Method for Solving Integro-Differential Equations of Fractional Order
In this article, we implement a relatively new analytical technique, the reproducing kernel Hilbert space method (RKHSM), for solving integro-differential equations of fractional order. The solution obtained by using the method takes the form of a convergent series with easily computable components. Two numerical examples are studied to demonstrate the accuracy of the present method. The presen...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 4
صفحات 349- 358
تاریخ انتشار 2018-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023