The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables

نویسندگان: ثبت نشده
چکیده مقاله:

In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of real numbers. Moreover, we prove the almost sure convergence for weighted sums , when is a sequence of pairwise negative quadrant dependence stochastically bounded random variables under some suitable conditions on .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.

متن کامل

the almost sure convergence for weighted sums of linear negatively dependent random variables

in this paper, we generalize a theorem of shao [12] by assuming that is a sequence of linear negatively dependent random variables. also, we extend some theorems of chao [6] and thrum [14]. it is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of real numbe...

متن کامل

the almost sure convergence of weighted sums of negatively dependent random variables

in this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (nd) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and e|x | f | =0 , f = ?(x ,…, x ) for every n>l.

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

Almost sure convergence of weighted sums of independent random variables

Let (Ω,F ,P) be a probability space, and let {Xn} be a sequence of integrable centered i.i.d. random variables. In this paper we consider what conditions should be imposed on a complex sequence {bn} with |bn| → ∞, in order to obtain a.s. convergence of P n Xn bn , whenever X1 is in a certain class of integrability. In particular, our condition allows us to generalize the rate obtained by Marcin...

متن کامل

strong convergence of weighted sums for negatively orthant dependent random variables

we discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (nod) random variables by generalized gaussian techniques. as a corollary, a cesaro law of large numbers of i.i.d. random variables is extended in nod setting by generalized gaussian techniques.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 20  شماره 1

صفحات  -

تاریخ انتشار 2009-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023