Tetracycline Antibiotic Removal from Wastewater via Air-Cathode Microbial Fuel Cells
نویسندگان
چکیده مقاله:
Background and objective: Tetracyclines are the second most used group of antibiotics in the world. This type of antibiotic has a weak attraction in the body and enters wastewater through urine and feces. This study investigated the effectiveness of tetracycline removal from wastewater by air-cathode microbial fuel cells. Materials and methods: The current study was bench-scale experimental research as a batch mode. The anode was made of flat graphite and the air cathode was a carbon cloth with four PTFE diffusion layers with platinum cover (0.3 mg/cm2). Two similar reactors were used. The influent wastewater (500 mg/L) was injected into two reactors (one with tetracycline and the other without tetracycline). Both reactors were used in a batch mode with 1000 Ohm external impedance in 25±2 Cº via artificial wastewater. Results: The results of the study showed that the voltage production time in the tetracycline reactor was considerably longer than the tetracycline-free reactor. The amount of COD reduction was almost similar in both reactors. Although the effectiveness of COD reduction was similar in both reactors, because the operation time for the tetracycline reactor was longer, the rate of COD removal was considerably higher in the tetracycline-free reactor. Conclusion: The air-cathode microbial fuel cell reactor could remove about 50% of tetracycline antibiotic from the wastewater.
منابع مشابه
COD removal characteristics in air-cathode microbial fuel cells.
Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions ...
متن کاملAir-cathode structure optimization in separator-coupled microbial fuel cells.
Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials a...
متن کاملPower generation by packed-bed air-cathode microbial fuel cells.
Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated ca...
متن کاملUsing cathode spacers to minimize reactor size in air cathode microbial fuel cells.
Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm(-2)) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduc...
متن کاملDevelopment of a metal oxide cathode catalyst for air- cathode microbial fuel cells
Microbial fuel cell (MFC) converts the organic compounds to electricity. The higher cost of the cathode catalyst for oxygen reduction reaction (ORR) is one of the major limitations in the technology. Therefore, the study endeavored to introduce a novel cathode catalyst i.e. porous Co3O4 flakes for ORR in MFCs. The flakes exhibited the micropore surface area of 1.0372 m2/g. The MFC with cobalt o...
متن کاملMineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells.
The combined anaerobic-aerobic conditions in air-cathode single-chamber MFCs were used to completely mineralize pentachlorophenol (PCP; 5 mg/L), in the presence of acetate or glucose. Degradation rates of 0.140 ± 0.011 mg/L-h (acetate) and 0.117 ± 0.009 mg/L-h (glucose) were obtained with maximum power densities of 7.7 ± 1.1 W/m(3) (264 ± 39 W/m(2), acetate) and 5.1 ± 0.1 W/m(3) (175 ± 5 W/m(2)...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 4
صفحات 264- 272
تاریخ انتشار 2018-11
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023