Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids

نویسنده

  • Mona Torabi College of Computer Science, Tabari University of Babol, Iran
چکیده مقاله:

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to appropriate resources. The proposed method has less Makespan and price. In addition to implementing a grid computing system, the proposed method which is using three standard test functions in evolutionary multi-objective optimization is evaluated. In this paper, the number of elements in the assessment of the Pareto optimizes set, uniformity and error. The results show that this Search method has more optimization in particle number density and high accuracy with less error than the MOPSO and can be replaced as an effective solution for solving multi-objective optimization.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

task scheduling using particle swarm optimization algorithm with a selection guide and a measure of uniformity for computational grids

in this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. scheduling algorithms play an important role in grid computing, parallel tasks scheduling and sending them to appr...

متن کامل

Scheduling Jobs on Computational Grids Using Fuzzy Particle Swarm Algorithm

Grid computing is a computing framework to meet the growing computational demands. This paper introduces a novel approach based on Particle Swarm Optimization (PSO) for scheduling jobs on computational grids. The representations of the position and velocity of the particles in the conventional PSO is extended from the real vectors to fuzzy matrices. The proposed approach is to dynamically gener...

متن کامل

Job Scheduling on Computational Grids Using Fuzzy Particle Swarm Algorithm

Grid computing is a computing framework to meet the growing computational demands. Essential grid services contain more intelligent functions for resource management, security, grid service marketing, collaboration and so on. The load sharing of computational jobs is the major task of computational grids. Grid resource manager provides functional mechanism for discovery, publishing of resources...

متن کامل

SELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)

This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classifica...

متن کامل

A Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems

Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  1- 16

تاریخ انتشار 2017-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023