t-Pancyclic Arcs in Tournaments

نویسندگان

  • Manu Kapolke Lehrstuhl C fuer Mathematik, RWTH Aachen University, 52056 Aachen, Germany
  • Simon Meesker Lehrstuhl C fuer Mathematik, RWTH Aachen University, 52056 Aachen, Germany
  • Steffen Grueter Lehrstuhl C fuer Mathematik, RWTH Aachen University, 52056 Aachen, Germany
  • Wei Meng School of Mathematical Sciences, Shanxi University, 030006 Taiyuan, China
  • Yubao Guo Lehrstuhl C fuer Mathematik, RWTH Aachen University, 52056 Aachen, Germany
چکیده مقاله:

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $h^3(T)geq3$ for any non-trivial strong tournament $T$ and characterized the tournaments with $h^3(T)= 3$. In this paper, we generalize Moon's theorem by showing that $h^t(T)geq t$ for every $3leq tleq |V(T)|$ and characterizing the tournaments with $h^t(T)= t$. We also present all tournaments which fulfill $p^t(T)= t$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pancyclic out-arcs of a Vertex in Tournaments

Thomassen (J. Combin. Theory Ser. B 28, 1980, 142–163) proved that every strong tournament contains a vertex x such that each arc going out from x is contained in a Hamiltonian cycle. In this paper, we extend the result of Thomassen and prove that a strong tournament contains a vertex x such that every arc going out from x is pancyclic, and our proof yields a polynomial algorithm to nd such a v...

متن کامل

The out-arc 5-pancyclic vertices in strong tournaments

An arc in a tournament T with n ≥ 3 vertices is called k-pancyclic, if it belongs to a cycle of length l for all k ≤ l ≤ n. In this paper, the result that each s-strong (s ≥ 3) tournament T contains at least s + 2 out-arc 5-pancyclic vertices is obtained. Furthermore, our proof yields a polynomial algorithm to find s + 2 out-arc 5-pancyclic vertices of T .

متن کامل

Pancyclic out-arcs of a vertex in a hypertournament

A k-hypertournament H on n vertices, where 2 ≤ k ≤ n, is a pair H = (V,AH), where V is the vertex set of H and AH is a set of k-tuples of vertices, called arcs, such that for all subsets S ⊆ V of order k, AH contains exactly one permutation of S as an arc. Inspired by the successful extension of classical results for tournaments (i.e. 2-hypertournaments) to hypertournaments, by Gutin and Yeo [J...

متن کامل

Hamiltonian Cycles Avoiding Prescribed Arcs in Tournaments

In [6], Thomassen conjectured that if I is a set of k − 1 arcs in a k-strong tournament T , then T − I has a Hamiltonian cycle. This conjecture was proved by Fraisse and Thomassen [3]. We prove the following stronger result. Let T = (V, A) be a k-strong tournament on n vertices and let X1, X2, . . . , Xl be a partition of the vertex set V of T such that |X1| ≤ |X2| ≤ . . . ≤ |Xl|. If k ≥ ∑l−1 i...

متن کامل

The number of pancyclic arcs in a k-strong tournament

A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. An arc is pancyclic in a digraph D, if it belongs to a cycle of length l, for all 3 <= l <= |V (D)|. Let p(D) denote the number of pancyclic arcs in a digraph D and let h(D) denote the maximum number of pancyclic arcs belonging to the same Hamilton cycle of D. Note that p(D) >= h(D). Moon showed...

متن کامل

Diregular c-partite tournaments are vertex-pancyclic when c ≥ 5

In 4] it is conjectured that all diregular c-partite tournaments, with c 4, are pan-cyclic. In this paper we show that all diregular c-partite tournaments, with c 5, are in fact vertex-pancyclic.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 2

صفحات  123- 130

تاریخ انتشار 2019-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023