Synthesis of Nanoporous Metal Organic Framework MIL-53-Cu and Its Application for Gas Separation

نویسندگان

  • Elahe Motaee Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114 Tehran, I.R. IRAN
  • Mansoor Anbia Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114 Tehran, I.R. IRAN
  • Sakineh Mandegarzad Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114 Tehran, I.R. IRAN
  • Sara Sheykhi Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114 Tehran, I.R. IRAN
  • Vahid Hoseini Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114 Tehran, I.R. IRAN
چکیده مقاله:

MIL-53-Cu has been synthesized hydrothermally and has been used for the first time for gas separation. MIL-53-Cu shows adsorption capacities of 8.1, 0.7 and 0.5 m.mol/g, respectively, for CH4, CO2 and H2 at 30 bar and 298 K. The high CH4 adsorption capacity of MIL-53-Cu maybe attributed to the high pore volume and large number of open metal sites. The high selectivity for CH4 over CO2 (11.5) and H2 (16.2), suggests that MIL-53-Cu is a effective adsorbent material for the separation of CH4 from gas mixtures.

Download for Free

Sign up for free to access the full text

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

synthesis of nanoporous metal organic framework mil-53-cu and its application for gas separation

mil-53-cu has been synthesized hydrothermally and has been used for the first time for gas separation. mil-53-cu shows adsorption capacities of 8.1, 0.7 and 0.5 m.mol/g, respectively, for ch4, co2 and h2 at 30 bar and 298 k. the high ch4 adsorption capacity of mil-53-cu maybe attributed to the high pore volume and large number of open metal sites. the high selectivity for ch4 over co2 (11.5) an...

متن کامل

An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4.

Functionalizing the well-known MIL-53(Al) metal-organic framework with amino groups increases its selectivity in CO(2)/CH(4) separations by orders of magnitude while maintaining a very high capacity for CO(2) capture.

متن کامل

Application of a nanoporous metal organic framework based on iron carboxylate as drug delivery system

In the present study, a nanoporous metal organic framework (MOF) based on iron metal and amino terephthalate ligand MIL-101-NH2-Fe has been used as a carrier for loading and in vitro release of 5-flurouracil (5-FU) anticancer drug. The 5-FU drug loaded MOF was 13 wt % by using thermogravimetric analysis (TGA). The 5-FU release was monitored under physiological condition at 37°C, pH 7.4 in simul...

متن کامل

Application of a nanoporous metal organic framework based on iron carboxylate as drug delivery system

In the present study, a nanoporous metal organic framework (MOF) based on iron metal and amino terephthalate ligand MIL-101-NH2-Fe has been used as a carrier for loading and in vitro release of 5-flurouracil (5-FU) anticancer drug. The 5-FU drug loaded MOF was 13 wt % by using thermogravimetric analysis (TGA). The 5-FU release was monitored under physiological condition at 37°C, pH 7.4 in simul...

متن کامل

Ab Initio Parametrized Force Field for the Flexible Metal-Organic Framework MIL-53(Al).

A force field is proposed for the flexible metal-organic framework MIL-53(Al), which is calibrated using density functional theory calculations on nonperiodic clusters. The force field has three main contributions: an electrostatic term based on atomic charges derived with a modified Hirshfeld-I method, a van der Waals (vdW) term with parameters taken from the MM3 model, and a valence force fie...

متن کامل

Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe).

This investigation is based on a combination of experimental tools completed by a computational approach to deeply characterize the unusual adsorption behavior of the flexible MIL-53(Fe) in the presence of short linear alkanes. In contrast to the aluminum or chromium analogues we previously reported, the iron MIL-53 solid, which initially exhibits a closed structure in the dry state, shows more...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 33  شماره 4

صفحات  25- 28

تاریخ انتشار 2014-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023