Synthesis and Characterization of Co-Mn Nanocatalyst Prepared by Thermal Decomposition for Fischer-Tropsch Reaction
نویسندگان
چکیده مقاله:
Nano-structure of Co–Mn spinel oxide was prepared by thermal decomposition method using [Co(NH3)4CO3]MnO4 as the precursor. The properties of the synthesized material were characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), surface area measurements, Energy-Dispersive X-ray (EDX) spectroscopy analysis, UV-Vis spectrophotometer (UV-Vis), Fourier Transform InfraRed (FT-IR), Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analyses. The results show that Co–Mn spinel oxide is spherical in shape and possess crystallite size is about 12 nm. The catalytic activity and product selectivity were also investigated, in a micro-reactor (Fischer–Tropsch Synthesis (FTS) reaction) and the results compared with conventional Co-Mn oxide catalyst. The catalyst performance increased as the particle size of the catalyst decreased. Moreover, the olefin to paraffin ratios was increased, compared to the conventional catalyst.
منابع مشابه
preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis
کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.
Pilot scale study of Co-Fe-Ni nanocatalyst for CO hydrogenation in Fischer-Tropsch synthesis
In this work, a Co-Fe-Ni catalyst was prepared and the effect of a range of operational variables such as gas hourly space velocity (GHSV), calcination temperature, calcination time and agent on its catalytic performance for green-fuels production was investigated. By application of different characterization techniques such as XRD, BET, TGA/DSC, and SEM, it was found that these parameters have...
متن کاملRuthenium Modification on Mn and Zr-Modified Co/SiO2 Catalysts for Slurry-Phase Fischer-Tropsch Synthesis
The addition of Ru to Mn and Zr-modified Co/SiO2 catalysts, while applying different preparation orders and loading amounts, was investigated as a means of enhancing the Fischer-Tropsch synthesis reaction. The coimpregnation of Zr/SiO2 with Co, Mn and Ru gave the most attractive catalytic properties. This can be attributed to the higher dispersion of Co metal resulting from the coimpregnation o...
متن کاملCopper Oxide Nanoparticles Prepared by Solid State Thermal Decomposition: Synthesis and Characterization
In this paper, we have focused on the preparation and characterization of copper oxide nanoparticles by solid state thermal decomposition of copper(I) iodide in the presence of thiosemicarbazone ligands without the need for a catalyst, employing toxic solvent, template or surfactant and complicated equipment, which makes it efficient, one-step, simple and environment-friendly. CuO nanoparticles...
متن کاملFischer–Tropsch Synthesis with Cu-Co Nanocatalysts Prepared Using Novel Inorganic Precursor Complex
The structural properties and activities of Cu-Co catalysts used in Fischer-Tropsch synthesis are explored according to their method of preparation. Impregnation, co-precipitation, and a novel method of thermal decomposition were applied to an inorganic precursor complex to generate the Cu-promoted alumina- and silica-supported cobalt catalysts. The precursors and the catalysts obtained by ...
متن کاملMechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer–Tropsch Synthesis
Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of long-chain hydrocarbons is not well understood yet. The present work provides deeper insight into the relation between the kinetics of the FT reaction on a silica-supported cobalt catalyst and the composition of the surface adsorbed layer. Cofeedi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 37 شماره 3
صفحات 1- 9
تاریخ انتشار 2018-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023