Sufficient Inequalities for Univalent Functions
نویسندگان
چکیده مقاله:
In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.
منابع مشابه
Certain Inequalities for a General Class of Analytic and Bi-univalent Functions
In this work, the subclass of the function class S of analytic and bi-univalent functions is defined and studied in the open unit disc. Estimates for initial coefficients of Taylor- Maclaurin series of bi-univalent functions belonging these class are obtained. By choosing the special values for parameters and functions it is shown that the class reduces to several earlier known classes of analy...
متن کاملDifferential Inequalities and Criteria for Starlike and Univalent Functions
The main aim of this paper is to use the method of differential subordination to obtain a number of sufficient conditions for a normalized analytic function to be univalent or starlike in the unit disc. In particular, we find a condition on β so that each normalized analytic function f satisfying the condition ∣∣∣1 + zf ′′(z) 2f ′(z) − zf ′(z) f(z) ∣∣∣ < β, z ∈ Δ implies that f is univalent or ...
متن کاملCoefficient Inequalities for Certain Classes of Analytic and Univalent Functions
For functions f(z) which are starlike of order α, convex of order α, and λ-spirallike of order α in the open unit disk U, some interesting sufficient conditions involving coefficient inequalities for f(z) are discussed. Several (known or new) special cases and consequences of these coefficient inequalities are also considered.
متن کاملNew integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 12 شماره None
صفحات 111- 116
تاریخ انتشار 2017-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023