Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
studies on sturm-liouville boundary value problems for multi-term fractional differential equations
abstract. the sturm-liouville boundary value problem of the multi-order fractional differential equation is studied. results on the existence of solutions are established. the analysis relies on a weighted function space and a fixed point theorem. an example is given to illustrate the efficiency of the main theorems.
متن کاملThree Positive Solutions of Sturm–liouville Boundary Value Problems for Fractional Differential Equations
We establish the results on the existence of three positive solutions to Sturm-Liouville boundary value problems of the singular fractional differential equation with the nonlinearity depending on D 0+u ⎪⎨ ⎪⎩ D0+u(t)+ f (t,u(t),D μ 0+ u(t)) = 0, t ∈ (0,1),1 < α < 2, a limt→0 I2−α 0+ u(t)−b limt→0 [ I2−α 0+ u(t) ]′ = ∫ 1 0 g(s,u(s),D μ 0+u(s))ds, c D 0+u(1)+du(1) = ∫ 1 0 h(s,u(s),D μ 0+u(s))ds. ...
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملOn boundary value problem for fractional differential equations
In this paper, we study the existence of solutions for a fractional boundary value problem. By using critical point theory and variational methods, we give some new criteria to guarantee that the problems have at least one solution and infinitely many solutions.
متن کاملExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 1
صفحات 107- 124
تاریخ انتشار 2015-06-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023