Strong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms

نویسندگان

  • F. U. Ogbuisi School of Mathematics‎, ‎Statistics and Computer Science‎, ‎University of KwaZulu-Natal‎, ‎Durban‎, ‎South Africa.
  • O. S. Iyiola Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Wisconsin, USA
  • Y. Shehu Department of Mathematics, University of Nigeria, Nsukka, Nigeria.
چکیده مقاله:

‎Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space‎. ‎So many have used algorithms involving the operator norm for solving split equality fixed point problem‎, ‎but as widely known the computation of these algorithms may be difficult and for this reason‎, ‎some researchers have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm‎. ‎To the best of our knowledge most of the works in literature that do not involve the calculation or estimation of the operator norm only obtained weak convergence results‎. ‎In this paper, by appropriately modifying the simultaneous iterative algorithm introduced by Zhao‎, ‎we state and prove a strong convergence result for solving split equality problem‎. ‎We present some applications of our result and then give some numerical example to study its efficiency and implementation at the end of the paper‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

strong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms

‎our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real hilbert space‎. ‎so many have used algorithms involving the operator norm for solving split equality fixed point problem‎, ‎...

متن کامل

A strong convergence theorem for solutions of zero point problems and fixed point problems

Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated‎. ‎A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces‎.

متن کامل

a strong convergence theorem for solutions of zero point problems and fixed point problems

zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated‎. ‎a strong convergence theorem for the common solutions of the problems is established in the framework of hilbert spaces‎.

متن کامل

Solving proximal split feasibility problems without prior knowledge of operator norms

Abstract In this paper our interest is in investigating properties and numerical solutions of Proximal Split feasibility Problems. First, we consider the problem of finding a point which minimizes a convex function f such that its image under a bounded linear operator A minimizes another convex function g. Based on an idea introduced in [9], we propose a split proximal algorithm with a way of s...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 2

صفحات  349- 371

تاریخ انتشار 2017-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023