Spectrum Preserving Linear Maps Between Banach Algebras
نویسندگان
چکیده مقاله:
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
منابع مشابه
Polynomially Spectrum-preserving Maps between Commutative Banach Algebras
Let A and B be unital semi-simple commutative Banach algebras. In this paper we study two-variable polynomials p which satisfy the following property: a map T from A onto B such that the equality σ(p(Tf, T g)) = σ(p(f, g)), f, g ∈ A holds is an algebra isomorphism.
متن کاملInvertibility Preserving Linear Maps of Banach Algebras
This talk discusses a conjecture of R. V. Kadison and myself. Our conjecture is that each one-to-one linear map of one unital C*-algebra onto another that preserves the identity is a Jordan isomorphism if it maps the invertible elements of the first C*-algebra onto the invertible elements of the other C*-algebra. Connections are shown between this conjecture and Cartan’s uniqueness theorem. 1. ...
متن کاملMultiplicatively Spectrum-preserving and Norm-preserving Maps between Invertible Groups of Commutative Banach Algebras
Let A and B be unital semisimple commutative Banach algebras and T a map from the invertible group A onto B. Linearity and multiplicativity of the map are not assumed. We consider the hypotheses on T : (1) σ(TfTg) = σ(fg); (2) σπ(TfTg−α)∩σπ(fg−α) 6= ∅; (3) r(TfTg−α) = r(fg−α) hold for some non-zero complex number α and for every f, g ∈ A, where σ(·) (resp. σπ(·)) denotes the (resp. peripheral) ...
متن کاملA Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کاملOn Preserving Properties of Linear Maps on $C^{*}$-algebras
Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 2
صفحات 183- 187
تاریخ انتشار 2015-12-31
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023