Spectral Scheme for Solving Fuzzy Volterra Integral Equations of First Kind

نویسنده

  • Laleh Hooshangian Department of Mathematics, Dezful Branch, Islamic Azad University, Dezful, Iran
چکیده مقاله:

This paper discusses about the solution of fuzzy Volterra integral equation of first-kind (F-VIE1) using spectral method. The parametric form of fuzzy driving term is applied for F-VIE1, then three classifications for (F-VIE1) are searched to solve them. These classifications are considered based on the interval sign of the kernel. The Gauss-Legendre points and Legendre weights for arithmetics in spectral method are used to solve (F-VIE1). Finally, two examples are got to illustrate more. However, accuracy and efficiency are shown in tables.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPLICATION OF FUZZY EXPANSION METHODS FOR SOLVING FUZZY FREDHOLM- VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

In this paper we intend to offer new numerical methods to solvethe fuzzy Fredholm- Volterra integral equations of the firstkind $(FVFIE-1)$. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.  

متن کامل

Application of Fuzzy Expansion Methods for Solving Fuzzy Fredholm- Volterra Integral Equations of the First Kind

In this paper we intend to offer new numerical methods to solve the fuzzy FredholmVolterra integral equations of the first kind (FV FIE − 1) base on collocation and Galerkin methods. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.

متن کامل

Homotopy approximation technique for solving nonlinear‎ ‎Volterra-Fredholm integral equations of the first kind

In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...

متن کامل

SOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS

In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...

متن کامل

A Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations

This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.

متن کامل

Bounds of high quality for first kind Volterra integral equations

E-Methnds for .,aflving linear Volterra integral equatitms of the first kind with smot~th kernels are considered. E-MethotL~ are a new type of numerical algorithms computing numerical approximations together with mathematically guaranteed do.~ error I~amds, The basic concepts from verifi~ttion thet~ry are sketched and such ~lf-validating numerics derived. O~mputati~mal experiments show the effi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 2

صفحات  113- 129

تاریخ انتشار 2018-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023