Some results on the symmetric doubly stochastic inverse eigenvalue problem
نویسندگان
چکیده مقاله:
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic matrix $A$ with $sigma$ as its spectrum, then the list $sigma$ is s.d.s. realizable, or such that $A$ s.d.s. realizes $sigma$. In this paper, we propose a new sufficient condition for the existence of the symmetric doubly stochastic matrices with prescribed spectrum. Finally, some results about how to construct new s.d.s. realizable lists from the known lists are presented.
منابع مشابه
On the Inverse Symmetric Quadratic Eigenvalue Problem
The detailed spectral structure of symmetric, algebraic, quadratic eigenvalue problems has been developed recently. In this paper we take advantage of these canonical forms to provide a detailed analysis of inverse problems of the form: construct the coefficient matrices from the spectral data including the classical eigenvalue/eigenvector data and sign characteristics for the real eigenvalues....
متن کاملThe symmetric eigenvalue problem: stochastic perturbation theory and some network
Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. This thesis may be ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملA Note on the Symmetric Recursive Inverse Eigenvalue Problem
In [1] the recursive inverse eigenvalue problem for matrices was introduced. In this paper we examine an open problem on the existence of symmetric positive semidefinite solutions that was posed there. We first give several counterexamples for the general case and then characterize under which further assumptions the conjecture is valid. 1. Introduction. In [1] several classes of recursive inve...
متن کاملSome remarks on the inverse eigenvalue problem for real symmetric Toeplitz matrices
Two theorems about the solution properties of the Toeplitz Inverse Eigenvalue Problem (ToIEP) are introduced and proved. One of them is applied to make a better starting generator and the other can be used to double the number of solutions found. These applications are tested through a short Mathematica program. Also an optimisation method for solving ToIEP with global convergence property is p...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 43 شماره 3
صفحات 853- 865
تاریخ انتشار 2017-06-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023