Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables
نویسندگان: ثبت نشده
چکیده مقاله:
In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.
منابع مشابه
some probability inequalities for quadratic forms of negatively dependent subgaussian random variables
in this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. in particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.
متن کاملRosenthal’s Type Inequalities for Negatively Orthant Dependent Random Variables
In this paper, we obtain some Rosenthal’s type inequalities for negatively orthant dependent (NOD) random variables.
متن کاملEstimation of the Survival Function for Negatively Dependent Random Variables
Let be a stationary sequence of pair wise negative quadrant dependent random variables with survival function {,1}nXn?F(x)=P[X>x]. The empirical survival function ()nFx based on 12,,...,nXXX is proposed as an estimator for ()nFx. Strong consistency and point wise as well as uniform of ()nFx are discussed
متن کاملSOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES
In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...
متن کاملSparse Hanson-Wright inequalities for subgaussian quadratic forms
In this paper, we provide a proof for the Hanson-Wright inequalities for sparse quadratic forms in subgaussian random variables. This provides useful concentration inequalities for sparse subgaussian random vectors in two ways. Let X = (X1, . . . , Xm) ∈ R be a random vector with independent subgaussian components, and ξ = (ξ1, . . . , ξm) ∈ {0, 1} be independent Bernoulli random variables. We ...
متن کاملA tail inequality for quadratic forms of subgaussian random vectors
This article proves an exponential probability tail inequality for positive semidefinite quadratic forms in a subgaussian random vector. The bound is analogous to one that holds when the vector has independent Gaussian entries.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 16 شماره 1
صفحات -
تاریخ انتشار 2005-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023