Some Observations on Dirac Measure-Preserving Transformations and their Results
نویسندگان
چکیده مقاله:
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac measure space and its measure algebras are presented. Then all of measure spaces that are isomorphic with a Dirac measure space are characterized and the concept of a Dirac measure class is introduced and its elements are characterized. More precisely, it is shown that every absolutely continuous measure with respect to a Dirac measure belongs to the Dirac measure class. Finally, the relation between Dirac measure preserving transformations and strong-mixing is studied.
منابع مشابه
Some measure - preserving point transformations on the Wiener space and their ergodicity
Suppose that T is a map of the Wiener space into itself, of the following type: T = I + u where u takes its values in the Cameron-Martin space H. Assume also that u is a finite sum of H-valued multiple Ito-Wiener integrals. In this work we prove that if T preserves the Wiener measure, then necessarily u is in the first Wiener chaos and the transformation corresponding to it is a rotation in the...
متن کاملMeasure Preserving Transformations
This gives us a new probability measure on (Ω,F), so we may define expectations with respect to this conditioned probability measure. Thus for F measurable Y : Ω → R we define the conditional expectation E[Y | X = x] by taking the expectation of Y with respect to the measure (1.1). Consider now how to generalize the idea of conditional probability to the case when P (X = x) = 0. We wish to do t...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Generating Dense Subgroups of Measure Preserving Transformations
Except for a set of first category, all pairs of measure preserving transformations generate a dense subgroup of G, the group of all invertible measure preserving transformations of the unit interval when G has the weak topology. Consider G the group of invertible (Lebesgue) measure preserving transformations of the unit interval onto itself. On G, we put the weak topology (Halmos [2, pp. 61-67...
متن کاملQuasi-factors for Infinite-measure Preserving Transformations
This paper is a study of Glasner’s definition of quasi-factors in the setting of infinite-measure preserving system. The existence of a system with zero Krengel entropy and a quasi-factor with positive entropy is obtained. On the other hand, relative zero-entropy for conservative systems implies relative zero-entropy of any quasi-factor with respect to its natural projection onto the factor. Th...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره 1
صفحات 117- 126
تاریخ انتشار 2019-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023