Some Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling

نویسندگان

  • M. Ajami Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran
  • S. Jomhoori Department of Statistics, Faculty of Sciences, University of Birjand, Birjand, Islamic Republic of Iran
  • V. Fakoor Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran
چکیده مقاله:

In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by real automobile brake pads data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some asymptotic results of kernel density estimator in length-biased sampling

in this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by jones [12] for length-biased data.the approach is based on the invariance principle for the empirical processes proved by horváth [10]. all simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...

متن کامل

A Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data

Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

a berry-esseen type bound for the kernel density estimator of length-biased data

length-biased data are widely seen in applications. they are mostly applicable in epidemiological studies or survival analysis in medical researches. here we aim to propose a berry-esseen type bound for the kernel density estimator of this kind of data.the rate of normal convergence in the proposed berry-esseen type theorem is shown to be o(n^(-1/6) ) modulo logarithmic term as n tends to infin...

متن کامل

asymptotic behaviors of nearest neighbor kernel density estimator in left-truncated data

kernel density estimators are the basic tools for density estimation in non-parametric statistics.  the k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. in this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Asymptotic normality of Powell’s kernel estimator

In this paper, we establish asymptotic normality of Powell’s kernel estimator for the asymptotic covariance matrix of the quantile regression estimator for both i.i.d. and weakly dependent data. As an application, we derive the optimal bandwidth that minimizes the approximate mean squared error of the kernel estimator.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 24  شماره 1

صفحات  55- 62

تاریخ انتشار 2013-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023