Solving Volterra's Population Model via Rational Christov Functions Collocation Method
نویسندگان
چکیده مقاله:
The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested in terms of $RES$ error and compare the obtained results with some well-known results.The numerical results obtained show that the proposed method produces a convergent solution.
منابع مشابه
Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کاملThe Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model
This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...
متن کاملNumerical solution of Troesch's problem using Christov rational functions
We present a collocation method to obtain the approximate solution of Troesch's problem which arises in the confinement of a plasma column by radiation pressure and applied physics. By using the Christov rational functions and collocation points, this method transforms Troesch's problem into a system of nonlinear algebraic equations. The rate of convergence is shown to be exponential. The numer...
متن کاملa collocation method for solving nonlinear differential equations via hybrid of rationalized haar functions
hybrid of rationalized haar functions are developed to approximate the solution of the differential equations. the properties of hybrid functions which are the combinations of block-pulse functions and rationalized haar functions are first presented. these properties together with the newton-cotes nodes are then utilized to reduce the differential equations to the solution of algebraic equation...
متن کاملNumerical approximations for population growth model by Rational Chebyshev and Hermite Functions collocation approach: A comparison
This paper aims to compare rational Chebyshev (RC) and Hermite functions (HF) collocation approach to solve the Volterra’s model for population growth of a species within a closed system. This model is a nonlinear integro-differential equation where the integral term represents the effect of toxin. This approach is based on orthogonal functions which will be defined. The collocation method redu...
متن کاملComparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 4
صفحات 301- 306
تاریخ انتشار 2017-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023