Solving multiobjective linear programming problems using ball center of polytopes

نویسندگان

  • A. H. Dehmiry Department of Applied Mathematics‎, ‎Faculty of Mathematics and Computer‎, ‎Shahid Bahonar University of Kerman‎, ‎Kerman‎, ‎Iran.
  • M. A. Yaghoobi Department of Applied Mathematics‎, ‎Faculty of Mathematics and Computer‎, ‎Shahid Bahonar University of Kerman‎, ‎Kerman‎, ‎Iran.
چکیده مقاله:

Here‎, ‎we aim to develop a new algorithm for solving a multiobjective linear programming problem‎. ‎The algorithm is to obtain a solution which approximately meets the decision maker's preferences‎. ‎It is proved that the proposed algorithm always converges to a weak efficient solution and at times converges to an efficient solution‎. ‎Numerical examples and a simulation study are used to illustrate the performance of the proposed algorithm‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solving multiobjective linear programming problems using ball center of polytopes

here‎, ‎we aim to develop a new algorithm for solving a multiobjective linear programming problem‎. ‎the algorithm is to obtain a solution which approximately meets the decision maker's preferences‎. ‎it is proved that the proposed algorithm always converges to a weak efficient solution and at times converges to an efficient solution‎. ‎numerical examples and a simulation study are used to...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

SOLVING FUZZY LINEAR PROGRAMMING PROBLEMS WITH LINEAR MEMBERSHIP FUNCTIONS-REVISITED

Recently, Gasimov and Yenilmez proposed an approach for solving two kinds of fuzzy linear programming (FLP) problems. Through the approach, each FLP problem is first defuzzified into an equivalent crisp problem which is non-linear and even non-convex. Then, the crisp problem is solved by the use of the modified subgradient method. In this paper we will have another look at the earlier defuzzifi...

متن کامل

A Method for Solving Linear Programming Problems with Fuzzy Parameters Based on Multiobjective Linear Programming Technique

In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters (FLP). Then by using the concept of comparison of fuzzy numbers we transform FLP problem into a multiobjective linear programming (MOLP) problem. T...

متن کامل

solving linear semi-infinite programming problems using recurrent neural networks

‎linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎in this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎by a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎then‎, ‎we use...

متن کامل

Solving Multiobjective Linear Programming Problem Using Interval Arithmetic

Abstract In the real world, we often encounter cases where the information / data items can’t be determined with certainty. Hence the value of the datum in the data is assessed using an interval. Meanwhile multiobjective linear programming model is more adequate to describe the problem in the real world. Thus, the multiobjective linear programming problem will be developed into a multiobjective...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 42  شماره Issue 7 (Special Issue)

صفحات  67- 88

تاریخ انتشار 2016-12-18

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023