Slope Stability Analysis Using a Self-Adaptive Genetic Algorithm
نویسندگان
چکیده مقاله:
This paper introduces a methodology for soil slope stability analysis based on optimization, limit equilibrium principles and method of slices. In this study, the slope stability analysis problem is transformed into a constrained nonlinear optimization problem. To solve that, a Self-Adaptive Genetic Algorithm (GA) is utilized. In this study, the slope stability safety factors are the objective functions, slip surface parameters are the decision variables and, the equilibrium equations are the problem constraints. The proposed model satisfies all conditions of the equilibrium completely. It is also applicable to problems with different soil layers, variable soil properties and including pore water pressure. The model is applied against a benchmark example and the results are compared with previous studies. Accordingly, it is found computationally efficient and reliable.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Rock Slope Stability Analysis Using Discrete Element Method
Rock slope stability depends very much on the strength features of the rock and the geometrical and strength characteristics of the discontinuities (e.g., roughness, wall strength and persistence). Since a rock mass is not a continuum, its behavior is dominated by such discontinuities as faults, joints and bedding planes. Also, Rock slope instability is a major hazard for human activities and o...
متن کاملA Proposed Modeling Method in Finite Element Slope Stability Analysis
Limit-equilibrium method (LEM) and finite element method (FEM) with strength reduction method (SRM) techniques are the most widely used analysis tools in slope stability assessment. Recently, researchers have reported that both factor of safety (FOS) values and failure surfaces obtained from LEM and FEM are generally in good agreement, except in some particular cases. In this paper, the FOS and...
متن کاملSlope Stability Analysis Using A Non-linear Optimization Technique (RESEARCH NOTE)
In this study, a limit equilibrium method has been developed that satisfies all conditions of equilibrium and assumes circular slip surfaces. All force and moment equilibrium equations are employed without using simplification assumptions. A non-linear optimization technique is used to solve the system of equations with the corresponding constraints. The proposed method is capable to determine ...
متن کاملGenetic Algorithms A Self Adaptive Hybrid Genetic Algorithm
This paper presents a self-adaptive hybrid genetic algorithm (SAHGA) and compares its performance to a non-adaptive hybrid genetic algorithm (NAHGA) and the simple genetic algorithm (SGA) on two multi-modal test functions with complex geometry. The SAHGA is shown to be far more robust than the NAHGA, providing fast and reliable convergence across a broad range of parameter settings. For the mos...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 48- 57
تاریخ انتشار 2016-08-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023