SEMIGROUP ACTIONS , WEAK ALMOST PERIODICITY, AND INVARIANT MEANS
نویسندگان: ثبت نشده
چکیده مقاله:
Let S be a topological semigroup acting on a topological space X. We develop the theory of (weakly) almost periodic functions on X, with respect to S, and form the (weakly) almost periodic compactifications of X and S, with respect to each other. We then consider the notion of an action of Son a Banach space, and on its dual, and after defining S-invariant means for such a space, we give a result concerning the existence of such means, and apply it to prove the existence of a G-invariant mean on the space of weakly almost periodic functions defined on a topological space on which a topological group G acts.
منابع مشابه
Compactifications, Hartman functions and (weak) almost periodicity
In this paper we investigate Hartman functions on a topological group G. Recall that (ι, C) is a group compactification of G if C is a compact group, ι : G → C is a continuous group homomorphism and ι(G) ⊆ C is dense. A bounded function f : G 7→ C is a Hartman function if there exists a group compactification (ι, C) and F : C → C such that f = F ◦ ι and F is Riemann integrable, i.e. the set of ...
متن کاملTopologically left invariant means on semigroup algebras
Let M(S) be the Banach algebra of all bounded regular Borel measures on a locally compact Hausdorff semitopological semigroup S with variation norm and convolution as multiplication. We obtain necessary and sufficient conditions for M(S)∗ to have a topologically left invariant mean.
متن کاملWeak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups
Let S be a locally compact foundation semigroup with identity and be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of In this paper, we prove that X is invariantly complemented in if and only if the left ideal of has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...
متن کاملAmenable Actions and Almost Invariant Sets
In this paper, we study the connections between properties of the action of a countable group Γ on a countable set X and the ergodic theoretic properties of the corresponding generalized Bernoulli shift, i.e., the corresponding shift action of Γ on MX , where M is a measure space. In particular, we show that the action of Γ on X is amenable iff the shift Γ ↪→MX has almost invariant sets.
متن کاملAlmost Invariant Submanifolds for Compact Group Actions
A compact (not necessarily connected) Lie group G carries a (unique) biinvariant probability measure. Using this measure, one can average orbits of actions of G on affine convex sets to obtain fixed points. In particular, if G acts on a manifoldM , G leaves invariant a riemannian metric onM , and this metric can sometimes be used to obtain fixed points for the nonlinear action of G on M itself....
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 2
صفحات -
تاریخ انتشار 1990-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023