Sampling from social networks’s graph based on topological properties and bee colony algorithm
نویسندگان
چکیده مقاله:
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as degree distribution, clustering coefficient, internal density and community structures, etc. There are various sampling methods such as random walk-based methods, methods based on the shortest path, graph partitioning-based algorithms, and etc. Each group of methods has its own pros and cones. The main drawback of these methods is the lack of attention to the high time complexity in making the sample graph and the quality of the obtained sample graph. In this paper, we propose a new sampling method by proposing a new equation based on the structural properties of social networks and combining it with bee colony algorithm. This sampling method uses an informed and non-random approach so that the generated samples are similar to the original network in terms of features such as network topological properties, degree distribution, internal density, and preserving the clustering coefficient and community structures. Due to the random nature of initial population generation in meta-heuristic sampling methods such as genetic algorithms and other evolutionary algorithms, in our proposed method, the idea of consciously selecting nodes in producing the initial solutions is presented. In this method, based on the finding hub and semi-hub nodes as well as other important nodes such as core nodes, it is tried to maintain the presence of these important nodes in producing the initial solutions and the obtained samples as much as possible. This leads to obtain a high-quality final sample which is close to the quality of the main network. In this method, the obtained sample graph is well compatible with the main network and can preserve the main characteristics of the original network such as topology, the number of communities, and the large component of the original graph as much as possible in sample network. Non-random and conscious selection of nodes and their involvement in the initial steps of sample extraction have two important advantages in the proposed method. The first advantage is the stability of the new method in extracting high quality samples in each time. In other words, despite the random behavior of the bee algorithm, the obtained samples in the final phase mostly have close quality to each other. Another advantage of the proposed method is the satisfactory running time of the proposed algorithm in finding a new sample. In fact, perhaps the first question for asking is about time complexity and relatively slow convergence of the bee colony algorithm. In response, due to the conscious selection of important nodes and using them in the initial solutions, it generates high quality solutions for the bee colony algorithm in terms of fitness function calculation. The experimental results on real world networks show that the proposed method is the best to preserve the degree distribution parameters, clustering coefficient, and community structure in comparison to other method.
منابع مشابه
Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملA KFCM Algorithm Based on Improved Artificial Bee Colony Algorithm
Kernel fuzzy C-mean clustering (KFCM) algorithm is effective for high-dimensional data, but this algorithm has some defects of sensitivity to initialization and local optima. Artificial Bee Colony (ABC) algorithm is based on intelligent behaviors of honey bee swarm. It has the properties of strong global optimization and fast convergence speed. A KFCM algorithm based on improved ABC is proposed...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملHow Can Bee Colony Algorithm Serve Medicine?
Healthcare professionals usually should make complex decisions with far reaching consequences and associated risks in health care fields. As it was demonstrated in other industries, the ability to drill down into pertinent data to explore knowledge behind the data can greatly facilitate superior, informed decisions to ensue the facts. Nature has always inspired researchers to develop models of ...
متن کاملDistance-Based Topological Indices and Double graph
Let $G$ be a connected graph, and let $D[G]$ denote the double graph of $G$. In this paper, we first derive closed-form formulas for different distance based topological indices for $D[G]$ in terms of that of $G$. Finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topologica...
متن کاملA Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring
for Graph 3-Coloring Iztok Fister Jr.,∗ Iztok Fister,† and Janez Brest‡ Abstract The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 17 شماره 3
صفحات 55- 70
تاریخ انتشار 2020-11
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023