Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach
نویسنده
چکیده مقاله:
Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under canopy vegetation cover can be noted in attracting and preventing runoff in the forest floor and reducing subsequent environmental risks. The purpose of this article is forest under canopy vegetation density changes modeling considering forest ecosystem structure and forest management activities as an environmental risk. The main objectives of this study were to: (1) model forest under canopy vegetation density in forest ecosystem to elucidate the ecological and management factors affecting on under canopy vegetation density; (2) prioritize the impacts of model inputs (ecological and management factors) on under canopy vegetation density using model sensitivity analysis and (3) determining the trend model output changes in respond to model variables changes. In this study, Land Management Units (LMUs) were formed in the region considering ecological characteristics of land. LMUs were mapped out based on Ian McHarg’s overlay technique by ARC GIS 9.3 software. Ecological factor classes of an LMU differ from ecological factor classes of adjacent LMUs (at least in one ecological factor class). The following types of data were solicited for each LMU: (1) Ecological variables: Altitude or elevation (El), Slope (Sl), Aspect (As), soil depth (SD), Soil Drainage (SDr),Soil Erosion (SE), Precitipation (Pr), Temprature (Te), trees Diameter at Breast Height (DBH), Canopy Cover (CC), and forest Regeneration Cover (RC). (2) Management variables: Cattle Density (CD), Animal husbandry Dsitance (AD), Road Dsitance (RD), Trail Dsitance (TD), logs Depot Dsitance (DD), Soil Compaction (SC), Torist impacts (To), Skidding impacts (Sk), Logging impacts (Lo), Harvested trees volume (Ha), artificial Regeneration (Re) and Seed Planting (SP). (3) Forest under canopy vegetation density: The percentage of under canopy vegetation density in each LMU was estimated by systematic random sampling method. In each LMU, a one square meter sample was taken. The average percentage of under canopy vegetation density in sample units of each LMU was calculated and used in the modeling process. ANN learns by examples and it can combine a large number of variables. In this study, an ANN is considered as a computer program capable of learning from samples, without requiring a prior knowledge of the relationships between parameters. To objectively evaluate the performance of the network, four different statistical indicators were used. These indicators are Mean-Squared Error (MSE), Root Mean-Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2). Various MLFNs were designed and trained as one and two layers to find an optimal model prediction for the under canopy vegetation density and variables. Training procedure of the networks was as follows: different hidden layer neurons and arrangements were adapted to select the best production results. Altogether, many configurations with different number of hidden layers (varied between one and two), different number of neurons for each of the hidden layers, and different inter-unit connection mechanisms were designed and tested. In this research, 129 LMUs were totally selected, then ecological and management variables were recorded in them. In the structure of artificial neural network, ecological and management variables were tagged as inputs of artificial neural network and the percentage of under canopy vegetation density was tagged as output layer. Considering trained networks (the structure of optimum artificial neural network has been summarized in Table1), Multilayer Perceptron network with one hidden layer and 4 neurons in each hidden layer created the best function of topology optimization with higher coefficient of determination of test data (which equals 0.857) and the lowest MSE and MAE (which are 0.866 and 0.736 respectively). Considering the results of sensitivity analysis, ecological and management variables like the forest canopy density, cattle density in forest, soil erosion and soil compaction respectively show the highest impact on forest under canopy vegetation density changes (Fig1). Table1. The structure of optimum artificial neural network in forest under canopy vegetation density Output Layer First Hidden Layer Network features Linear Hyperbolic tangent Transmission Layer Gradient descent Gradient descent Optimization Algorithm 0.7 0.7 Momentum 1 4 Number of Neurons -0.9 up to 0.9 -0.9 up to 0.9 Normalization Table2. The structure of optimum artificial neural network in test data MSE MAE RMSE R2 Data The structure of network( the number of neurons)-epoch 0.716 0.678 0.846 0.931 Trainning Tanh(4)-160 0.793 0.703 0.891 0.894 Validation 0.866 0.736 0.931 0.857 Test Fig1. The results of sensitivity analysis of artificial neural network model Nowadays, artificial neural network modeling in natural environments has been applied successfully in many researches such as water resources management, forest sciences and environment assessment. The results of research declared that designed neural network shows high capability in forest under canopy vegetation density modeling which is applicable in forest management of studied area. Sensitivity analysis identified the most effective variables which are influencing under canopy vegetation density. So, to identify hazardous LMUs in study area, we should pay attention to the canopy density of LMUs as the variable with high priority in determination of under canopy vegetation density. We believe that, in hazardous LMUs in forests, we should pay attention to some modifiable factors of LMU, which is cattle density in forest, by timely plan for livestock elimination. The forest under canopy vegetation density assessment model, in forest projects impact assessment, could be a solution in decision making about forest plan structure and implementation of similar projects in similar locations. Keywords: Forest plan, Environmental impact assessment, Multilayer perceptron, under canopy vegetation, artificial neural network
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Introducing the improved Forest Canopy density (FCD) model for frequent assessment of Hyrcanian forest
Mapping of forest extent is a prerequisite to acquire quantitative and qualitative information about forests and to formulate management and conservation strategies. forest canopy density (FCD) model is one of the useful RS methods for forest mapping using satellite images. One of the most serious challenges in FCD model is the weakness in the calculation of canopy density in low density forest...
متن کاملassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
Cell Deformation Modeling Under External Force Using Artificial Neural Network
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...
متن کاملForest Canopy Density Monitoring, Using Satellite Images
The increasing use of satellite Remote Sensing for civilian use has proved to be the most cost effective means of mapping and monitoring environmental changes in terms of vegetation and non-renewable resources, especially in developing countries. Data can be obtained as frequently as required to provide information for determination of quantitative and qualitative changes in terrain. Forests as...
متن کاملForecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach
Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 21- 34
تاریخ انتشار 2019-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023