Riordan group approaches in matrix factorizations

نویسندگان

  • Emrah Kilic TOBB University of Economics and Technology Mathematics Department
چکیده مقاله:

In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

riordan group approaches in matrix factorizations

in this paper, we consider an arbitrary binary polynomial sequence {a_n} and then give a lower triangular matrix representation of this sequence. as main result, we obtain a factorization of the in nite generalized pascal matrix in terms of this new matrix, using a riordan group approach. further some interesting results and applications are derived.

متن کامل

The Double Riordan Group

The Riordan group is a group of infinite lower triangular matrices that are defined by two generating functions, g and f . The kth column of the matrix has the generating function gfk. In the Double Riordan group there are two generating function f1 and f2 such that the columns, starting at the left, have generating functions using f1 and f2 alternately. Examples include Dyck paths with level s...

متن کامل

The Riordan group

Shapiro, L.W., S. Getu, W.-J. Woan and L.C. Woodson, The Riordan group, Discrete Applied Mathematics 34 (1991) 229-239.

متن کامل

Matrix Characterizations of Riordan Arrays

Here we discuss two matrix characterizations of Riordan arrays, P -matrix characterization and A-matrix characterization. P -matrix is an extension of the Stieltjes matrix defined in [25] and the production matrix defined in [7]. By modifying the marked succession rule introduced in [18], a combinatorial interpretation of the P -matrix is given. The P -matrix characterizations of some subgroups...

متن کامل

The Sheffer group and the Riordan group

We define the Sheffer group of all Sheffer-type polynomials and prove the isomorphism between the Sheffer group and the Riordan group. An equivalence of the Riordan array pair and generalized Stirling number pair is also presented. Finally, we discuss a higher dimensional extension of Riordan array pairs. AMS Subject Classification: 05A15, 11B73, 11B83, 13F25, 41A58

متن کامل

Learning with matrix factorizations

Matrices that can be factored into a product of two simpler matrices can serve as a useful and often natural model in the analysis of tabulated or highdimensional data. Models based on matrix factorization (Factor Analysis, PCA) have been extensively used in statistical analysis and machine learning for over a century, with many new formulations and models suggested in recent years (Latent Sema...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 38  شماره 2

صفحات  491- 506

تاریخ انتشار 2012-07-15

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023