Rings for which every simple module is almost injective

نویسندگان

  • H. Khabazian Department of Mathematical Sciences‎, ‎Isfahan University of Technology‎, ‎Isfahan‎, ‎Iran.
  • M. Arabi-Kakavand Department of Mathematical Sciences‎, ‎Isfahan University of Technology‎, ‎Isfahan‎, ‎Iran.
  • Sh. Asgari Department of Mathematical Sciences‎, ‎University of Isfahan‎, ‎Isfahan‎, ‎Iran‎, ‎and School of Mathematics‎, ‎Institute for Research in Fundamental Sciences (IPM)‎, ‎Tehran‎, ‎Iran.
چکیده مقاله:

We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-ring if and only if for every simple R-module S, either S is injective or the injective hull of S is projective of length 2. Right Artinian right almost V-rings and right Noetherian right almost V-rings are characterized. A 2×2 upper triangular matrix ring over R is a right almost V-ring precisely when R is semisimple.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rings for which every simple module is almost injective

we introduce the class of “right almost v-rings” which is properly between the classes of right v-rings and right good rings. a ring r is called a right almost v-ring if every simple r-module is almost injective. it is proved that r is a right almost v-ring if and only if for every r-module m, any complement of every simple submodule of m is a direct summand. moreover, r is a right almost v-rin...

متن کامل

Right Self-injective Rings in Which Every Element Is a Sum of Two Units

In 1954 Zelinsky [16] proved that every element in the ring of linear transformations of a vector space V over a division ring D is a sum of two units unless dim V = 1 and D = Z2. Because EndD(V ) is a (von-Neumann) regular ring, Zelinsky’s result generated quite a bit of interest in regular rings that have the property that every element is a sum of (two) units. Clearly, a ring R, having Z2 as...

متن کامل

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

متن کامل

Almost Every Domain is Universal

We endow the collection of ω-bifinite domains with the structure of a probability space, and we will show that in this space the collection of all universal domains has measure 1. For this, we present a probabilistic way to extend a finite partial order by one element. Applying this procedure iteratively, we obtain an infinite partial order. We show that, with probability 1, the cpo-completion ...

متن کامل

Combinatorial Optimization Problems for Which Almost Every Algorithm is Asymptotically Optimal

Consider a class of optimization problems with the sum, bottleneck and capacity objective functions for which the cardinality of the set of feasible solutions is m and the size of every feasible solution is N. We prove that in a general probabilistic framework the value of the optimal solution and the value of the worst solution are asymptotically almost surely (a.s.) equal provided logm = o(N)...

متن کامل

Almost every 2-SAT function is unate

Bollobás, Brightwell and Leader [2] showed that there are at most 2( n 2)+o(n 2) 2-SAT functions on n variables, and conjectured that in fact almost every 2-SAT function is unate: i.e., has a 2-SAT formula in which no variable’s positive and negative literals both appear. We prove their conjecture, finding the number of 2-SAT functions on n variables to be 2( n 2)+n(1 + o(1)). As a corollary of...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 42  شماره 1

صفحات  113- 127

تاریخ انتشار 2016-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023