RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

نویسندگان

  • MUKUT TRIPATHI
  • SUNGPU HONG
چکیده مقاله:

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form, and (2) of the fact that if a C-totally real submanifold of maximum dimension satisfies the equality case, then it must be must be minimal. Two basic inequalities for submanifolds of any Riemannian manofild, one involving scaler curvature and the squared mean curvature and the other involving the invariant and the squared mean curvature are also obtained. These results are applied to get corresponding results for submanifolds of Sasakian space forms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ricci Curvature of C-totally Real Submanifolds in Sasakian Space Forms

Let Mn be a Riemannian n-manifold. Denote by S(p) and Ric(p) the Ricci tensor and the maximum Ricci curvature on Mn, respectively. In this paper we prove that every C-totally real submanifolds of a Sasakian space form M̄2m+1(c) satisfies S ≤ ( (n−1)(c+3) 4 + n 2 4 H2)g, where H2 and g are the square mean curvature function and metric tensor on Mn, respectively. The equality holds identically if ...

متن کامل

Contact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form

In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition  h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.

متن کامل

Ricci Curvature of Quaternion Slant Submanifolds in Quaternion Space Forms

In this article, we obtain sharp estimate of the Ricci curvature of quaternion slant, bi-slant and semi-slant submanifolds in a quaternion space form, in terms of the squared mean curvature.

متن کامل

Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.

متن کامل

Slant submanifolds with prescribed scalar curvature into cosymplectic space form

In this paper, we have proved that locally there exist infinitely many three dimensional slant submanifolds with prescribed scalar curvature into cosymplectic space form M 5 (c) with c ∈ {−4, 4}while there does not exist flat minimal proper slant surface in M 5 (c) with c 6= 0. In section 5, we have established an inequality between mean curvature and sectional curvature of the subamnifold and ...

متن کامل

A Note on Chen’s Basic Equality for Submanifolds in a Sasakian Space Form

It is proved that a Riemannian manifold M isometrically immersed in a Sasakian space form˜M(c) of constant ϕ-sectional curvature c < 1, with the structure vector field ξ tangent to M, satisfies Chen's basic equality if and only if it is a 3-dimensional minimal invariant submanifold. 1. Introduction. Let˜M be an m-dimensional almost contact manifold endowed with an almost contact structure (ϕ,ξ,...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره None

صفحات  31- 51

تاریخ انتشار 2006-11

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023