Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
نویسنده
چکیده مقاله:
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined from $W^{1}_{0}L_{M}(Omega)$ into its dual, $Phi in C^{0}(mathbb{R},mathbb{R}^{N})$. The function $g(x,u,nabla u)$ is a non linear lower order term with natural growth with respect to $|nabla u|$, satisfying the sign condition and the datum $mu$ is assumed belong to $L^1(Omega)+W^{-1}E_{overline{M}}(Omega)$.
منابع مشابه
Orlicz Spaces and Nonlinear Elliptic Eigenvalue Problems
Nonlinear elliptic differential equations of order m acting in a space of m dimensions often occupy a special position in more general theories. In this paper we shall study one aspect of this situation. The nonlinear problem under consideration will be the variational approach to eigenvalue problems for nonlinear elliptic partial differential equations as developed by the author in [l], [2], [...
متن کاملMultiple Solutions for Quasilinear Elliptic Neumann Problems in Orlicz-sobolev Spaces
Here, Ω is a bounded domain with sufficiently smooth (e.g. Lipschitz) boundary ∂Ω and ∂/∂ν denotes the (outward) normal derivative on ∂Ω. We assume that the function φ :R→R, defined by φ(s)= α(|s|)s if s = 0 and 0 otherwise, is an increasing homeomorphism from R to R. Let Φ(s)= ∫ s 0 φ(t)dt, s∈R. Then Φ is a Young function. We denote by LΦ the Orlicz space associated withΦ and by ‖ · ‖Φ the usu...
متن کاملMultiple Solutions for Strongly Resonant Nonlinear Elliptic Problems with Discontinuities
We examine a nonlinear strongly resonant elliptic problem driven by the p-Laplacian and with a discontinuous nonlinearity. We assume that the discontinuity points are countable and at them the nonlinearity has an upward jump discontinuity. We show that the problem has at least two nontrivial solutions without using a multivalued interpretation of the problem as it is often the case in the liter...
متن کاملAn Orlicz-sobolev Space Setting for Quasilinear Elliptic Problems
In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition.
متن کاملMultiple Solutions for Nonlinear Discontinuous Strongly Resonant Elliptic Problems
We consider quasilinear strongly resonant problems with discontinuous right-hand side. To develop an existence theory we pass to a multivalued problem by, roughly speaking, filling in the gaps at the discontinuity points. We prove the existence of at least three nontrivial solutions. Our approach uses the nonsmooth critical point theory for locally Lipschitz functionals due to Chang (1981) and ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره 1
صفحات 95- 119
تاریخ انتشار 2019-04
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023