Removal of methylene blue by mesoporous CuO/SiO2 as catalyst
نویسندگان
چکیده مقاله:
Among a wide range of pollutants, organic pollutants have given rise to major environmental concerns. Various methods have been considered to mitigate the damage, including catalytic reduction to less hazardous compounds. Catalysts that benefit from high surface area and suitable surface sites for various steps of the catalytic reaction have shown outstanding results in performing such duties. Mesoporous CuO/SiO2 has been synthesized and characterized here and it showed excellent results for catalytic removal of methylene blue as a model organic pollutant. Several control samples were also studied to postulate a possible mechanism for activity enhancement.
منابع مشابه
Efficient Removal of Methylene Blue by Fenton-like Reaction using nZVI/GAC Composite as Catalyst
A composite of nano-zerovalent iron (nZVI) supported on granular activated carbon (GAC) was synthesizedthrough adsorption-reduction method, and its performances used as catalyst of Fenton-like were investigated to degrade methylene blue (MB) in model wastewater.Theresults show thathomogeneous dispersion of nZVI was greatly improved after supported on GAC. In comparison, the composite (nZVI/GAC)...
متن کاملEfficient Fenton like degradation of Methylene blue in aqueous solution by using Fe3O4 nanoparticles as catalyst
Fe3O4 nanoparticles were prepared hydrothermally and characterized by X-Ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). It was found that these nanoparticles can act as an efficient catalyst in the degradation of Methylene blue dye in aqueous solution in a Fenton like system in presence of 30% perhydrol. Uv-Vis spectroscopy was used to determine the concentration of ...
متن کاملEfficient Sunlight-Induced Methylene Blue Removal over One-Dimensional Mesoporous Monoclinic BiVO4 Nanorods
Sunlight-driven mesoporous BiVO(4) nanorods with monoclinic structure have been successfully synthesized via a simple hydrothermal method. The as-prepared one-dimensional BiVO(4) nanorods exhibited high specific surface area due to their unique mesoporous structure. The mesoporous BiVO(4) nanorods possessed strong photoabsorption properties in the visible light region as well as the ultravisibl...
متن کاملRemoval of methylene blue dye aqueous solution using photocatalysis
The nano sized TiO2 and ZnO are the most active photocatalysts. Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...
متن کاملRemoval of methylene blue dye by application of polyaniline nano composite from aqueous solutions
This paper deals with application of polyaniline coated on wood sawdust for removal ofmethylene blue (MB) dye from aqueous solutions. Polyaniline coated onto sawdust (termedas PAn/SD) was prepared via direct chemical polymerization onto sawdust which waspreviously soaked in the monomer (aniline) solution in acidic (HC1) media. Adsorptionexperiments were carried out using batch system. The effec...
متن کاملRemoval of methylene blue dye aqueous solution using photocatalysis
The nano sized TiO2 and ZnO are the most active photocatalysts. Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 3
صفحات 169- 183
تاریخ انتشار 2020-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023