Relation Between Wiener, Szeged and Detour Indices

نویسندگان

  • M. Ghorbani Department of mathematics, Shahid Rajaee Teacher Training University
چکیده مقاله:

In theoretical chemistry, molecular structure descriptors are used to compute properties of chemical compounds. Among them Wiener, Szeged and detour indices play significant roles in anticipating chemical phenomena. In the present paper, we study these topological indices with respect to their difference number.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

relation between wiener, szeged and detour indices

in theoretical chemistry, molecular structure descriptors are used to compute properties of chemical compounds. among them wiener, szeged and detour indices play significant roles in anticipating chemical phenomena. in the present paper, we study these topological indices with respect to their difference number.

متن کامل

Differences between detour and Wiener indices

Let G be a connected graph and let μ(G) = DD(G) − W (G), where DD(G) and W (G) stand for the detour and Wiener numbers of G, respectively. Nadjafi-Arani et al. [Math. Comput. Model. 55 (2012), 1644– 1648] classified connected graphs whose difference between Szeged and Wiener numbers are n, for n = 4, 5. In this paper, we continue their work to prove that for any positive integer n = 1, 2, 4, 6 ...

متن کامل

Relationship between Edge Szeged and Edge Wiener Indices of Graphs

Let G be a connected graph and ξ(G) = Sze(G)−We(G), where We(G) denotes the edge Wiener index and Sze(G) denotes the edge Szeged index of G. In an earlier paper, it is proved that if T is a tree then Sze(T ) = We(T ). In this paper, we continue our work to prove that for every connected graph G, Sze(G) ≥ We(G) with equality if and only if G is a tree. We also classify all graphs with ξ(G) ≤ 5. ...

متن کامل

On a Relation between Szeged and Wiener Indices of Bipartite Graphs

Hansen et. al., using the AutoGraphiX software package, conjectured that the Szeged index Sz(G) and the Wiener index W (G) of a connected bipartite graph G with n ≥ 4 vertices and m ≥ n edges, obeys the relation Sz(G) − W (G) ≥ 4n − 8. Moreover, this bound would be the best possible. This paper offers a proof to this conjecture.

متن کامل

on a relation between szeged and wiener indices of bipartite graphs

hansen et‎. ‎al.‎, ‎using the autographix software ‎package‎, ‎conjectured that the szeged index $sz(g)$ and the‎ ‎wiener index $w(g)$ of a connected bipartite graph $g$ with $n geq ‎4$ vertices and $m geq n$ edges‎, ‎obeys the relation‎ ‎$sz(g)-w(g) geq 4n-8$‎. ‎moreover‎, ‎this bound would be the best possible‎. ‎this paper offers a proof to this conjecture‎.

متن کامل

The Wiener, Szeged, and PI Indices of a Dendrimer Nanosta

Let G= V E be a simple connected graph. The distance between two vertices of G is defined to be the length of the shortest path between the two vertices. There are topological indices assigned to G and based on the distance function which are invariant under the action of the automorphism group of G. Some important indices assigned to G are the Wiener, Szeged, and PI index which we will find th...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره Supplement 1

صفحات  45- 51

تاریخ انتشار 2014-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023