Random gravitational emulation search algorithm (RGES (in scheduling traveling salesman problem

نویسندگان

چکیده مقاله:

this article proposes a new algorithm for finding a good approximate set of non-dominated solutions for solving generalized traveling salesman problem. Random gravitational emulation search algorithm (RGES (is presented for solving traveling salesman problem. The algorithm based on random search concepts, and uses two parameters, speed and force of gravity in physics. The proposed algorithm is compared with genetic algorithm and experimental results show that the proposed algorithm has better performance and less runtime to be answered.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Multiple Traveling Salesman Problem using the Gravitational Emulation Local Search Algorithm

Multiple Travelling Salesman Problem (mTSP) is one of the most popular and widely used combinatorial optimization problems in the operational research. Many complex problems can be modeled and solved by the mTSP. To solve the mTSP, deterministic algorithms cannot be used as the mTSP is an NP-hard optimization problem. Hence, heuristics approaches are usually applied. In this paper, the Gravitat...

متن کامل

Fuzzy Random Traveling Salesman Problem

The travelling salesman problem is to find a shortest path from the travelling salesman’s hometown, make the round of all the towns in the set, and finally go back home. This paper investigates the travelling salesman problem with fuzzy random travelling time. Three concepts are proposed: expected shortest path, (α, β)-path and chance shortest path according to different optimal desire. Corresp...

متن کامل

Biogeography Migration Algorithm for Traveling Salesman Problem

Biogeography-based optimization algorithm(BBO) is a new kind of optimization algorithm based on Biogeography. It is designed based on the migration strategy of animals to solve the problem of optimization. In this paper, a new algorithm-Biogeography Migration Algorithm for Traveling Salesman Problem(TSPBMA) is presented. Migration operator is designed. It is tested on four classical TSP problem...

متن کامل

Traveling Salesman Problem using Genetic Algorithm

Traveling Salesman Problem (TSP) is an NP-hard Problem, which has many different real life applications. Genetic Algorithms (GA) are robust and probabilistic search algorithms based on the mechanics of natural selection and survival of the fittest that is used to solve optimization and many real life problems. This paper presents Genetic Algorithm for TSP. Moreover it also shows best suitable p...

متن کامل

Immune-Genetic Algorithm for Traveling Salesman Problem

The Traveling Salesman Problem (TSP), first formulated as a mathematical problem in 1930, has been receiving continuous and growing attention in artificial intelligence, computational mathematics and optimization in recent years. TSP can be described as follows: Given a set of cities, and known distances between each pair of cities, the salesman has to find a shortest possible tour that visits ...

متن کامل

an effective ant colony algorithm for the traveling salesman problem

the traveling salesman problem (tsp) is a well-known combinatorial optimization problem and holds a central place in logistics management. the tsp has received much attention because of its practical applications in industrial problems. many exact, heuristic and metaheuristic approaches have been proposed to solve tsp in recent years. in this paper, a modified ant colony optimization (maco) is ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 29  شماره 1

صفحات  103- 112

تاریخ انتشار 2018-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023