Prediction of Physical Delay Period RiDirect Injection Diesel Engine Combustion

نویسندگان

چکیده مقاله:

A semi-empirical mathematical model for predicting the physical part of ignition delay period in the combustion of diesel engines with swirl is developed. This model is based on a single droplet evaporation model. The governing equations, namely, equations of droplet motion, heat and mass transfer were solved simultaneously using a Runge-Kutta step by step method. The computation was executed until somewhere in the vapor layer around the liquid droplet a near stochiometric mixture of the fuel vapor and air having at least the self-ignition temperature of the fuel formed. The predicted physical delay time for a particular Dl. diesel engine is in good agreement with engine standard data and data in the literature. Also validity of the model is examined with variation of the combustion chamber and fuel injection system data. From the parametric studies it seems that the physical delay period is particularly effected by fuel initial temperature, injection pressure, swirl level, and ambient temperature. Also from examination of the results an algebric relation for quick calculation of physical delay time is derived

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

prediction of ignition delay period in d.i diesel engines

a semi-empirical mathematical model for predicting physical part of ignition delay period in the combustion of direct - injection diesel engines with swirl is developed . this model based on a single droplet evaporation model . the governing equations , namely , equations of droplet motion , heat and mass transfer were solved simultaneously using a rung-kutta step by step unmerical method . the...

Effects of Direct Water Injection on DI Diesel Engine Combustion

The effects of in-cylinder water injection on a direct injection (DI) Diesel engine were studied using a computational fluid dynamics (CFD) program based on the Kiva-3v code. The spray model is validated against experimental bomb data with good agreement for vapor penetration as a function of time. It was found that liquid penetration increased approximately 35% with 23% of the fuel volume repl...

متن کامل

Three-Dimensional Modeling of Combustion Process, Soot and NOx formation In a Direct-injection Diesel Engine

This paper is presented to study the combustion process and emissions in a direct injection diesel engine. Computations are carried out using a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. Interactions between combustion and emissions with flow field are considered and it is shown that soot mass fraction increases at regions with low turbulence inten...

متن کامل

Modeling of Combustion and Carbon Oxides Formation in Direct Injection Diesel Engine

When looking at the effects of diesel engine exhaust on the environment, it is important to first look at the composition of the exhaust gases. Over 99.5% of the exhaust gases are a  combination of  nitrogen, oxygen, carbon dioxide, and water. With the exception of carbon  dioxide, which contributes about  5% of the total volume, the diesel engine exhaust consists of  elements which are part of...

متن کامل

Active Combustion Control of Diesel HCCI Engine: Combustion Timing

We propose a model based control strategy to adapt the injection settings according to the air path dynamics on a Diesel HCCI engine. This approach complements existing airpath and fuelpath controllers, and aims at accurately controlling the start of combustion. For that purpose, start of injection is adjusted based on a Knock Integral Model and intake manifold conditions. Experimental results ...

متن کامل

Three Dimensional Modeling of Mixture Formation and Combustion in a Direct Injection Heavy-Duty Diesel Engine

Due to the stringent legislation for emission of diesel engines and also increasing demand on fuel consumption, the importance of detailed 3D simulation of fuel injection, mixing and combustion have been increased in the recent years. In the present work, FIRE code has been used to study the detailed modeling of spray and mixture formation in a Caterpillar heavy-duty diesel engine. The paper pr...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 3

صفحات  141- 148

تاریخ انتشار 1991-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023