Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian
نویسندگان
چکیده مقاله:
In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))' + a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0 leq t leq 1, alpha_i u_i(0) - beta_i u_i'(0) = mu_{i1} u_i(xi_i),hspace{0.2cm} gamma_i u_i(1) + delta_i u_i'(1) = mu_{i2} u_i(eta_i), hspace{0.5cm} u_i''(0) = 0,end{array} right.end{eqnarray*}where $ phi_{p_i}(s) = |s|^{p_i-2}s,$, are $p_i$-Laplacianoperators, $p_i > 1, 0 < xi_i < 1, 0 < eta_i < 1$ and $mu_{i1},mu_{i2}> 0$ for $i = 1,2, ldots,n$.
منابع مشابه
positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian
in this work, byemploying the leggett-williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))' + a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0 leq t leq 1, alpha_i u...
متن کاملPositive Solutions for System of Third-order Generalized Sturm-Liouville Boundary Value Problems with (p,q)-Laplacian
Abstract: In this work, by employing the Leggett-Williams fixed point theorem, we study the existence of at least three positive solutions of boundary value problems for system of third-order ordinary differential equations with (p,q)-Laplacian (φp(u ′′(t)))′ + a1(t)f1(t, u(t), v(t)) = 0 0 ≤ t ≤ 1, (φq(v ′′(t)))′ + a2(t)f2(t, u(t), v(t)) = 0 0 ≤ t ≤ 1, α1u(0)− β1u(0) = μ11u(ξ1), γ1u(1) +...
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملPositive solutions of higher-order Sturm-Liouville boundary value problems with derivative-dependent nonlinear terms
wherem≥ 3 and 1≤ q≤m – 2. We note that the nonlinear term F involves derivatives. This makes the problem challenging, and such cases are seldom investigated in the literature. In this paper we develop a new technique to obtain existence criteria for one or multiple positive solutions of the boundary value problem. Several examples with known positive solutions are presented to dwell upon the us...
متن کاملExistence of Positive Solutions for Singular P-laplacian Sturm-liouville Boundary Value Problems
We prove the existence of positive solutions of the Sturm-Liouville boundary value problem −(r(t)φ(u′))′ = λg(t)f(t, u), t ∈ (0, 1), au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0, where φ(u′) = |u′|p−2u′, p > 1, f : (0, 1) × (0,∞) → R satisfies a p-sublinear condition and is allowed to be singular at u = 0 with semipositone structure. Our results extend previously known results in the...
متن کاملPositive solutions for discrete Sturm-Liouville-like four-point p-Laplacian boundary value problems
We consider the existence of positive solutions for a class of discrete second-order four-point boundary value problem with p-Laplacian. Using the well known Krasnosel’skii’s fixed point theorem, some new existence criteria for positive solutions of the boundary value problem are presented.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 11- 21
تاریخ انتشار 2013-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023