Polarization constant $mathcal{K}(n,X)=1$ for entire functions of exponential type

نویسندگان

  • A. Pappas Civil Engineering Department, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece
  • L. Athanasopoulou Department of Electronics Engineering, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece
  • P. Papadopoulos adepartment of electronics engineering, school of technological applications, technological educational institution (tei) of piraeus, gr 11244, egaleo, athens, greece.
چکیده مقاله:

In this paper we will prove that if $L$ is a continuous symmetric n-linear form on a Hilbert space and $widehat{L}$ is the associated continuous n-homogeneous polynomial, then $||L||=||widehat{L}||$. For the proof we are using a classical generalized  inequality due to S. Bernstein for entire functions of exponential type. Furthermore we study the case that if X is a Banach space then we have that$$|L|=|widehat{L}|,;forall ;; L in{mathcal{L}}^{s}(^{n}X);.$$If the previous relation holds for every $L in {mathcal{L}}^{s}left(^{n}Xright)$, then spaces ${mathcal{P}}left(^{n}Xright)$ and  $L in {mathcal{L}}^{s}(^{n}X)$ are isometric. We can also study the same problem using Fr$acute{e}$chet derivative.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

polarization constant $k(n,x)=1$ for entire functions of exponential type

in this paper we will prove that if $l$ is a continuous symmetric n-linear form on a hilbert spaceand $widehat{l}$ is the associated continuous n-homogeneous polynomial, then $||l||=||widehat{l}||$.for the proof we are using a classical generalized  inequality due to s. bernstein for entire functions of exponential type. furthermore we study the case that if x is a banach space then we have tha...

متن کامل

Entire Functions of Exponential Type

it is immaterial which value of z is used in (2). If (1) holds in a region of the s-plane, for example in an angle, ƒ(z) is said to be of exponential type c in that region. Functions of exponential type have been extensively studied, both for their own sake and for their applications. I shall discuss here a selection of their properties, chosen to illustrate how the restriction (1) on the growt...

متن کامل

Entire Functions of Exponential Type *

Since this series is absolutely convergent everywhere in the plane, lanl must approach zero as n approaches infinity. Consequently, there exists for each a, an index n(a) for which lanl is a maximal coefficient. B. Lepson [3]1 raised the question of characterizing entire functions for whidi n (a) is bounded in a. 2 In the sequel we shall consider certain interesting variations of Lepson's probl...

متن کامل

Inequalities for Entire Functions of Exponential Type

This paper is concerned with a class of linear operators acting in the space of the trigonometric polynomials and preserving the inequalities of the form \S(8)\ < \T(8)\ in the half plane Im 8 > 0. Some inequalities for entire functions of exponential type and some theorems concerning the distribution of the zeros of the trigonometric polynomials, including an analogue to the Gauss-Lucas theore...

متن کامل

Series Representations for Best Approximating Entire Functions of Exponential Type

Let > 0 not be an even integer. We derive Lagrange type series representations for the entire function of exponential type 1 that minimizes jjjxj f (x)jjLp(R) amongst all such entire functions f , when p = 1 and p =1. This minimum arises as the scaled limit of the Lp error of polynomial approximation of jxj on [ 1; 1], and is one representation of the Lp Bernstein constant.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 2

صفحات  35- 45

تاریخ انتشار 2015-08-13

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023