Pointfree topology version of image of real-valued continuous functions
نویسندگان
چکیده مقاله:
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present the pointfree version of image of real-valued continuous functions in $ {mathcal{R}} L$. In particular, we will introduce the pointfree version of the ring $C_c(X)$. We define a relation from $ {mathcal{R}} L$ into the power set of $mathbb R$, namely overlap. Fundamental properties of this relation are studied. The relation overlap is a pointfree version of the relation defined as $mathop{hbox{Im}} (f) subseteq S$ for every continuous function $f:Xrightarrowmathbb R$ and $ S subseteq mathbb R$.
منابع مشابه
Countable composition closedness and integer-valued continuous functions in pointfree topology
For any archimedean$f$-ring $A$ with unit in whichbreak$awedge (1-a)leq 0$ for all $ain A$, the following are shown to be equivalent: 1. $A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all integer-valued continuous functions on some frame $L$. 2. $A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$ of all integer-valued continuous functions, in the usual se...
متن کاملRings of Real Functions in Pointfree Topology
This paper deals with the algebra F(L) of real functions of a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L). As applications, idempotent function...
متن کاملExtended Real Functions in Pointfree Topology
In pointfree topology, a continuous real function on a frame L is a map L(R) → L from the frame of reals into L. The discussion of continuous real functions with possibly infinite values can be easily brought to pointfree topology by replacing the frame L(R) with the frame of extended reals L ( R ) (i.e. the pointfree counterpart of the extended real line R = R ∪ {±∞}). One can even deal with a...
متن کاملcountable composition closedness and integer-valued continuous functions in pointfree topology
for any archimedean$f$-ring $a$ with unit in whichbreak$awedge(1-a)leq 0$ for all $ain a$, the following are shown to beequivalent:1. $a$ is isomorphic to the $l$-ring ${mathfrak z}l$ of allinteger-valued continuous functions on some frame $l$. 2. $a$ is a homomorphic image of the $l$-ring $c_{bbb z}(x)$of all integer-valued continuous functions, in the usual sense,on som...
متن کاملINTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME
A frame $L$ is called {it coz-dense} if $Sigma_{coz(alpha)}=emptyset$ implies $alpha=mathbf 0$. Let $mathcal RL$ be the ring of real-valued continuous functions on a coz-dense and completely regular frame $L$. We present a description of the socle of the ring $mathcal RL$ based on minimal ideals of $mathcal RL$ and zero sets in pointfree topology. We show that socle of $mathcal RL$ is an essent...
متن کاملGroup-valued Continuous Functions with the Topology of Pointwise Convergence
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set F ⊆ X and every point x ∈ X \ F , there exist f ∈ Cp(X,G) and g ∈ G \ {e} such that f(x) = g and f(F ) ⊆ {e}; (b) G-regular provided that t...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 1
صفحات 59- 75
تاریخ انتشار 2018-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023