Planar perovskite solar cells using fullerene C70 as electron selective transport layer
نویسندگان
چکیده مقاله:
Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. It is demonstrated that ultra-thin C70 films can effectively block holes and thus become selective to the transport of electrons in PSC devices.
منابع مشابه
Fullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells
In this study, four kinds of structures—[6,6]-phenyl-C61-butyric acid methyl ester (PCBM), PCBM/fullerene (C60), C60/bathocuproine (BCP), and PCBM/C60/BCP—were used as electron transport layers, and the structure, and optical and electronic behaviors of MAPbBr3 perovskite layers after annealing treatments were observed. The experimental results indicate that PCBM/C60 bi-layer structure is accep...
متن کاملModified deposition process of electron transport layer for efficient inverted planar perovskite solar cells.
A highly-efficient inverted heterojunction perovskite solar cell was prepared. A homogeneous and compact perovskite (CH3NH3PbI3) layer was prepared via a two-step solution deposition method, and subsequently a double-layer PCBM film was deposited by a sequential spin-coating/vapor deposition process as the electron transport layer. The optimised device could achieve a 12.2% (average 11.09%) eff...
متن کاملTiO2 Phase Junction Electron Transport Layer Boosts Efficiency of Planar Perovskite Solar Cells
In the planar perovskite solar cells (PSCs), the electron transport layer (ETL) plays a critical role in electron extraction and transport. Widely utilized TiO2 ETLs suffer from the low conductivity and high surface defect density. To address these problems, for the first time, two types of ETLs based on TiO2 phase junction are designed and fabricated distributed in the opposite space, namely a...
متن کاملElectrodeposition of SnO2 on FTO and its Application in Planar Heterojunction Perovskite Solar Cells as an Electron Transport Layer
We report the performance of perovskite solar cells (PSCs) with an electron transport layer (ETL) consisting of a SnO2 thin film obtained by electrochemical deposition. The surface morphology and thickness of the electrodeposited SnO2 films were closely related to electrochemical process conditions, i.e., the applied voltage, bath temperature, and deposition time. We investigated the performanc...
متن کاملEffect of Seed Layer on the Morphology of Zinc Oxide Nanorods as an Electron Transport Layer in Polymer Solar Cells
Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...
متن کاملEnhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers
Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al3+ dop...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره None
صفحات 15- 24
تاریخ انتشار 2020-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023