Pilot scale study of Co-Fe-Ni nanocatalyst for CO hydrogenation in Fischer-Tropsch synthesis

نویسندگان

  • Ali Akbar Mirzaei Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
  • Hamid Reza Azizi Young Researchers Club, South Tehran Branch, Islamic Azad University, Tehran, Iran.
  • Massoud Kaykhaii Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
  • Razieh Sarani Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
چکیده مقاله:

In this work, a Co-Fe-Ni catalyst was prepared and the effect of a range of operational variables such as gas hourly space velocity (GHSV), calcination temperature, calcination time and agent on its catalytic performance for green-fuels production was investigated. By application of different characterization techniques such as XRD, BET, TGA/DSC, and SEM, it was found that these parameters have great effects on the structure, porosity, morphology and physic-chemical properties of this catalyst. The optimum conditions were found for the samples which were calcined at 550 ℃ in air for 6 hours, and operated at 300 ℃ and 4800h-1 as the reaction temperature and GHSV respectively. Results also revealed that any increase in the calcination temperature promotes the product shifting towards heavier hydrocarbons (more C5+ production). Calcination in air atmosphere was more effective than calcination in N2 atmosphere.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer–Tropsch Synthesis

Fischer-Tropsch (FT) synthesis is one of the most complex catalyzed chemical reactions in which the chain-growth mechanism that leads to formation of long-chain hydrocarbons is not well understood yet. The present work provides deeper insight into the relation between the kinetics of the FT reaction on a silica-supported cobalt catalyst and the composition of the surface adsorbed layer. Cofeedi...

متن کامل

Synthesis and Characterization of Co-Mn Nanocatalyst Prepared by Thermal Decomposition for Fischer-Tropsch Reaction

Nano-structure of Co–Mn spinel oxide was prepared by thermal decomposition method using [Co(NH3)4CO3]MnO4 as the precursor. The properties of the synthesized material were characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), surface area measurements, Energy-Dispersive X-ray (EDX) spectroscopy analys...

متن کامل

preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis

کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.

A Neuro-Fuzzy Algorithm for Modeling of Fischer-Tropsch Synthesis over a Bimetallic Co/Ni/Al2O3 Catalyst

An alumina supported Co/Ni catalyst was prepared by sol-gel procedure to study the catalytic behavior during Fischer-Tropsch synthesis in a fixed-bed reactor. The effect of CO conversion (10-50%) on hydrocarbon product distribution (CH4, C5+ and C2-C4 olefin selectivities) was studied. Selectivity for CH4 decreased, while those of C5+<...

متن کامل

Kinetic Study of Fischer Tropsch Synthesis over co Precipitated Iron-Cerium Catalyst

The kinetic of Fischer-Tropsch synthesis over a co-precipitated Fe-Ce catalyst was investigated in a fixed bed micro reactor. Experimental conditions were varied as follow: reaction pressure 1-15bar, H¬¬¬2/CO feed ratio of 1-3 and space velocity of 3600-5400 h-1 at the temperature range of 270-310°C. 4 models according to the Langmuir-Hinshelwood-Hougen-Watson (LHHW) type rate equation were der...

متن کامل

Prediction of Fe-Co-Mn/MgO Catalytic Activity in Fischer-Tropsch Synthesis Using Nu-support Vector Regression

Support vector regression (SVR) is a learning method based on the support vector machine (SVM) that can be used for curve fitting and function estimation. In this paper, the ability of the nu-SVR to predict the catalytic activity of the Fischer-Tropsch (FT) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (MLP) and subtractiv...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 3

صفحات  223- 231

تاریخ انتشار 2019-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023