Photodegradation of Methylene Blue Solution via Au Doped TiO2 Nanocomposite Catalysts Prepared Using Novel Photolysis Method
نویسنده
چکیده مقاله:
Gold doped TiO2 has been successfully synthesized via the photolysis method and is characterized by different techniques. NPs of gold doped TiO2 were utilized for the degradation of methylene blue as a material pigmentation pollutant. The substitution of Au on TiO2 surface was established via XRD, EDX, TEM, and FT-IR techniques. The TEM and SEM results appeared that the particles in the nano range and its size below 15nm. Without a catalyst, the degradation of dye under visible light in acid and nature medium gives humble results but good results at pH 11 while it gives excellent results at all conditions when using catalyst.
منابع مشابه
Catalytic Photodegradation and Mineralization of Cationic Dye Methylene Blue from Aqueous Solution onto Copper Doped Zeolite
In this study, the photodegradation and the mineralization of a cationic dye Methylene Blue (MB) from aqueous solution was investigated, in the presence of hydrogen peroxide, using a photocatalyst based on copper modified natural zeolite (Z-Cu). Comparative studies of photolysis, photocatalysis on the monocationic form of zeolite (Z-Na) and photocatalysis on Z-Cu, quantified in terms of process...
متن کاملPhotodegradation of reactive red 222 using TiO2 nanostructured thin films prepared by modified sol-gel method
In this paper, a modified sol-gel method using peroxotitanic acid sol (PTA) was applied for the preparation of TiO2 nanostructured thin films on glass plates. The peroxotitanic acid sol was synthesized using titanium isopropoxide, isopropylalchol, H2O and hydrogen peroxide. TiO2 films were then calcined at 500oC and characterized by X-ray diffraction ...
متن کاملOptimisation of the Photonic Efficiency of TiO2 Decorated on MWCNTs for Methylene Blue Photodegradation
MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible r...
متن کاملPhotodegradation of reactive red 222 using TiO2 nanostructured thin films prepared by modified sol-gel method
In this paper, a modified sol-gel method using peroxotitanic acid sol (PTA) was applied for the preparation of TiO2 nanostructured thin films on glass plates. The peroxotitanic acid sol was synthesized using titanium isopropoxide, isopropylalchol, H2O and hydrogen peroxide. TiO2 films were then calcined at 500oC and characterized by X-ray diffraction ...
متن کاملAg-doped TiO2 Nanocomposite Prepared by Sol Gel Method: Photocatalytic Bactericidal Under Visible Light and Characterization
In this reaserch, photocatalyst titanium dioxide was doped with silver and modified by polyethylene glycol by sol gel method and the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The purpose of the present study was to evaluate the photocatalytic bactericidal effects of prepared nanocomposite on human p...
متن کاملRemoval of methylene blue dye aqueous solution using photocatalysis
The nano sized TiO2 and ZnO are the most active photocatalysts. Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 38 شماره 2
صفحات 29- 35
تاریخ انتشار 2019-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023