Peripheral Wiener Index of a Graph

نویسندگان

چکیده مقاله:

The eccentricity of a vertex $v$ is the maximum distance between $v$ and anyother vertex. A vertex with maximum eccentricity is called a peripheral vertex.The peripheral Wiener index $ PW(G)$ of a graph $G$ is defined as the sum ofthe distances between all pairs of peripheral vertices of $G.$ In this paper, weinitiate the study of the peripheral Wiener index and we investigate its basicproperties. In particular, we determine the peripheral Wiener index of thecartesian product of two graphs and trees.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The edge-Wiener index of a graph

If G is a connected graph, then the distance between two edges is, by definition, the distance between the corresponding vertices of the line graph of G. The edge-Wiener index We of G is then equal to the sum of distances between all pairs of edges of G. We give bounds on We in terms of order and size. In particular we prove the asymptotically sharp upper bound We(G) ≤ 25 55 n5 + O(n9/2) for gr...

متن کامل

The Generalized Wiener Polarity Index of some Graph Operations

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

متن کامل

on wiener index of graph complements

let $g$ be an $(n,m)$-graph. we say that $g$ has property $(ast)$if for every pair of its adjacent vertices $x$ and $y$, thereexists a vertex $z$, such that $z$ is not adjacentto either $x$ or $y$. if the graph $g$ has property $(ast)$, thenits complement $overline g$ is connected, has diameter 2, and itswiener index is equal to $binom{n}{2}+m$, i.e., the wiener indexis insensitive of any other...

متن کامل

steiner wiener index of graph products

the wiener index $w(g)$ of a connected graph $g$‎ ‎is defined as $w(g)=sum_{u,vin v(g)}d_g(u,v)$‎ ‎where $d_g(u,v)$ is the distance between the vertices $u$ and $v$ of‎ ‎$g$‎. ‎for $ssubseteq v(g)$‎, ‎the {it steiner distance/} $d(s)$ of‎ ‎the vertices of $s$ is the minimum size of a connected subgraph of‎ ‎$g$ whose vertex set is $s$‎. ‎the {it $k$-th steiner wiener index/}‎ ‎$sw_k(g)$ of $g$ ...

متن کامل

Steiner Wiener Index of Graph Products

The Wiener index W (G) of a connected graph G is defined as W (G) = ∑ u,v∈V (G) dG(u, v) where dG(u, v) is the distance between the vertices u and v of G. For S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph of G whose vertex set is S. The k-th Steiner Wiener index SWk(G) of G is defined as SWk(G) = ∑ S⊆V (G) |S|=k d(S). We establish expressi...

متن کامل

On Wiener Index of Graph Complements

Let G be an (n, m)-graph. We say that G has property (∗) if for every pair of its adjacent vertices x and y, there exists a vertex z, such that z is not adjacent to either x or y. If the graph G has property (∗), then its complement G is connected, has diameter 2, and its Wiener index is equal to ( n 2 ) + m, i.e., the Wiener index is insensitive of any other structural details of the graph G. ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 1

صفحات  43- 56

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023