Perfect $2$-colorings of the Platonic graphs

نویسندگان

  • Hamed Karami School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran
  • Mohammad Hadi Alaeiyan School of Computer Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran
چکیده مقاله:

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Set Colorings in Perfect Graphs

(Received September 1, 2009) Abstract. For a nontrivial connected graph G, let c : V (G) → N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v ∈ V (G), the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) 6= NC(v) for every pair u, v of adjacent vertices of G. The minimum number of c...

متن کامل

On perfect 2-colorings of the q-ary n-cube

A coloring of a q-ary n-dimensional cube (hypercube) is called perfect if, for every n-tuple x, the collection of the colors of the neighbors of x depends only on the color of x. A Boolean-valued function is called correlation-immune of degree n − m if it takes value 1 the same number of times for each m-dimensional face of the hypercube. Let f = χ S be a characteristic function of a subset S o...

متن کامل

Defective 2-colorings of sparse graphs

A graph G is (j, k)-colorable if its vertices can be partitioned into subsets V1 and V2 such that in G[V1] every vertex has degree at most j and in G[V2] every vertex has degree at most k. We prove that if k ≥ 2j + 2, then every graph with maximum average degree at most 2 ( 2− k+2 (j+2)(k+1) ) is (j, k)colorable. On the other hand, we construct graphs with the maximum average degree arbitrarily...

متن کامل

2-Distance Colorings of Integer Distance Graphs

A 2-distance k-coloring of a graph G is a mapping from V (G) to the set of colors {1, . . . , k} such that every two vertices at distance at most 2 receive distinct colors. The 2-distance chromatic number χ2(G) of G is then the mallest k for which G admits a 2-distance k-coloring. For any finite set of positive integers D = {d1, . . . , dk}, the integer distance graph G = G(D) is the infinite g...

متن کامل

Cheeger constants of Platonic graphs

The Platonic graphs πn arise in several contexts, most simply as a quotient of certain Cayley graphs associated to the projective special linear groups. We show that when n = p is prime, πn can be viewed as a complete multigraph in which each vertex is itself a wheel on n + 1 vertices. We prove a similar structure theorem for the case of an arbitrary prime power. These theorems are then used to...

متن کامل

On locally-perfect colorings

A (proper) coloring of a finite simple graph (G) is pe#ect if it uses exactly o(G) colors, where o(G) denotes the order of a largest clique in G. A coloring is locally-perfect [3] if it induces on the neighborhood of every vertex v a perfect coloring of this neighborhood. A graph G is perfect (resp. locally-petfect) if every induced subgraph admits a perfect (resp. locally-perfect) coloring. Pr...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 2

صفحات  29- 35

تاریخ انتشار 2017-12-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023