Penalized Estimators in Cox Regression Model

نویسندگان

چکیده مقاله:

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regression model. Among all penalty functions, LASSO provides the best fit.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics for penalized spline estimators in quantile regression

Quantile regression predicts the τ -quantile of the conditional distribution of a response variable given the explanatory variable for τ ∈ (0, 1). The aim of this paper is to establish the asymptotic distribution of the quantile estimator obtained by penalized spline method. A simulation and an exploration of real data are performed to validate our results.

متن کامل

Penalized Likelihood-type Estimators for Generalized Nonparametric Regression

We consider the asymptotic analysis of penalized likelihood type estimators for generalized non-parametric regression problems in which the target parameter is a vector valued function defined in terms of the conditional distribution of a response given a set of covariates. A variety of examples including ones related to generalized linear models and robust smoothing are covered by the theory. ...

متن کامل

Model assisted Cox regression

Semiparametric random censorship (SRC) models (Dikta, 1998), derive their rationale from their ability to gainfully utilize parametric ideas within the random censorship environment. An extension of this approach is developed for Cox regression, producing new estimators of the regression parameter and baseline cumulative hazard function. Under correct parametric specification, the proposed esti...

متن کامل

L1 penalized estimation in the Cox proportional hazards model.

This article presents a novel algorithm that efficiently computes L(1) penalized (lasso) estimates of parameters in high-dimensional models. The lasso has the property that it simultaneously performs variable selection and shrinkage, which makes it very useful for finding interpretable prediction rules in high-dimensional data. The new algorithm is based on a combination of gradient ascent opti...

متن کامل

Penalized Regression with Model-Based Penalties

Nonparametric regression techniques such as spline smoothing and local tting depend implicitly on a parametric model. For instance, the cubic smoothing spline estimate of a regression function based on observations ti; Yi is the minimizer of P(Yi (ti))2 + R ( 00)2. Since R ( 00)2 is zero when is a line, the cubic smoothing spline estimate favors the parametric model (t) = 0+ 1t: Here we conside...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 25  شماره 1

صفحات  53- 67

تاریخ انتشار 2021-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023