Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold

نویسندگان

چکیده مقاله:

In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the proposed method and make comparisons with other traditional methods.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

construction and validation of translation metacognitive strategy questionnaire and its application to translation quality

like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...

Empirical Bayes Selection of Wavelet Thresholds

This paper explores a class of empirical Bayes methods for leveldependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixing weight, or sparsity parameter, for each level of the transform is chosen by marginal maximum likelihood. If estimation is carried out using the p...

متن کامل

Empirical Bayes vs. Fully Bayes Variable Selection

For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, Cp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical B...

متن کامل

petrology and geochemistry of khar-bash (western shahrood) and its relation ship to iron mineralization

منطقه مورد مطالعه در 23 کیلومتری جنوب غرب شهرستاشاهرود قرار دارد که در نقشه 100000/1 شاهرود قرار گرفته است.ناحیه مورد مطالعه در تقسیمات ساختاری ایران بخشی از زون البرز شرقی است . در طی سنوزوئیک این زون به شدت تحت تأثیر فازهای کوهزایی آلپی قرار گرفته و فعالیت های آتشفشانی انوسن در قسمت های غربی آن دیده می شود . از نظر ترکیب سنگ شناسی منطقه مورد مطالعه متنوع و بیشتر شامل سنگ های رسوبی مانند : آ...

15 صفحه اول

Empirical Bayes approaches to mixture problems and wavelet regression

We consider model selection in a hierarchical Bayes formulation of the sparse normal linear model in which individual variables have, independently, an unknown prior probability of being included in the model. The focus is on orthogonal designs, which are of particular importance in nonparametric regression via wavelet shrinkage. Empirical Bayes estimates of hyperparameters are easily obtained ...

متن کامل

Application of Non Parametric Empirical Bayes Estimation to High Dimensional Classification

We consider the problem of classification using high dimensional features’ space. In a paper by Bickel and Levina (2004), it is recommended to use naive-Bayes classifiers, that is, to treat the features as if they are statistically independent. Consider now a sparse setup, where only a few of the features are informative for classification. Fan and Fan (2008), suggested a variable selection and...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 2

صفحات  133- 146

تاریخ انتشار 2013-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023