Parameter Analysis and optimization of equal channel angular pressing extrusion for titanium alloy using Taguchi design of experiments method
نویسندگان
چکیده مقاله:
In this paper the influence of different parameters on equal channel angular pressing (EADAP) of titanium alloy is investigated. In the first step the most important parameters are selected, and then a table of experiments is designed using Taguchi method. After designing the table of experiments, all of the experiments are simulated using Abacus software and the results are optimized using Taguchi method. The results shows that the optimum levels for ECAP method between the implemented experiments of titanium are 120 degrees for die channel, ambient temperature and 2 passes.
منابع مشابه
Plastic deformation of 7075 Aluminum Alloy using Integrated Extrusion-Equal Channel Angular Pressing
Grain refinement improves the mechanical properties and formability of metals and alloys. So far, several different grain refinement methods have been proposed and studied. Severe plastic deformation is one of the most promising and efficient methods. Therefore, in the present study the possibility of imposing a two-step severe plastic deformation (Extrusion and Equal channel angular pressing) ...
متن کاملRe-strengthening in AA6063 Alloy During Equal Channel Angular Pressing
Equal channel angular pressing (ECAP) is carried out using two different configurations for the exit channel of the ECAP die, i.e., relieved and choked, with angles of 0.2 °. It is found that using a die with relieved exit channel, the sample was extruded for 6 passes with no surface cracks and an average cell size of 727 nm and a fraction of high angle grain boundaries of 54 % were achieved. M...
متن کاملNumerical Analysis of Az61 Magnesium Alloy Extrusion Process by Modified Equal Channel Angular Extrusion (ecae) Method
T. Bajor, M. Krakowiak, P. Szota, Czestochowa University of Technology, Czestochowa, Poland The paper presents the results of numerical modelling of AZ61 magnesium alloy hot deformation using modified ECAE method. The temperature-velocity conditions were analysed using FEM. The extrusion process was realised using the die with modified angular channel containing horizontal contracting zone in t...
متن کاملModeling and production of high strength Al strips by equal channel multi angular pressing method
Equal channel multi angular pressing (ECMAP) process is the efficient method to enhance the productivity of ultra-fine grained (UFG) materials, by increasing process continuity and as a result decreasing process required time. Comparing repetitive ECAP method, in the same period, the number of passes can be done by ECMAP. In this article, ECMAP of AL strips in two typical annealed and as receiv...
متن کاملSize effect in equal channel angular pressing (ECAP) process
The influence of the sample size (diameter while keeping the length constant) in equal channel angular pressing (ECAP) of pure aluminum is examined using finite element method (FEM) and experiment. Different sized aluminum rods were processed via ECAP and the effect of sample size on the strain homogeneity, process load, and the ratio of the friction to the total force were evaluated. The resul...
متن کاملEffect of Equal Channel Angular Pressing and Annealing Treatment on the Evolution of Microstructure in AlMg0.7Si Aluminum Alloy
In this research, samples of AlMg0.7Si aluminum alloy are deformed up to three passes using equal channel angular pressing (ECAP). Formation of a sub-micron structure after three passes of ECAP is demonstrated. Microstructural stability of the samples is investigated at temperatures of 300-500 °C. At 300 °C, fine recrystallized structure forms after 10 min which remains stable when the ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 3
صفحات 45- 56
تاریخ انتشار 2014-12-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023