Paired-Domination Game Played in Graphs
نویسندگان
چکیده مقاله:
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Dominator dominates at least one vertex not dominated by the vertices previously chosen, while each vertex chosen by Pairer is a vertex not previously chosen that is a neighbor of the vertex played by Dominator on his previous move. This process eventually produces a paired-dominating set of vertices of $G$; that is, a dominating set in $G$ that induces a subgraph that contains a perfect matching. Dominator wishes to minimize the number of vertices chosen, while Pairer wishes to maximize it. The game paired-domination number $gpr(G)$ of $G$ is the number of vertices chosen when Dominator starts the game and both players play optimally. Let $G$ be a graph on $n$ vertices with minimum degree at least~$2$. We show that $gpr(G) le frac{4}{5}n$, and this bound is tight. Further we show that if $G$ is $(C_4,C_5)$-free, then $gpr(G) le frac{3}{4}n$, where a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. If $G$ is $2$-connected and bipartite or if $G$ is $2$-connected and the sum of every two adjacent vertices in $G$ is at least~$5$, then we show that $gpr(G) le frac{3}{4}n$.
منابع مشابه
The domination game played on unions of graphs
In a graph G, a vertex is said to dominate itself and its neighbors. The Domination game is a two player game played on a finite graph. Players alternate turns in choosing a vertex that dominates at least one new vertex. The game ends when no move is possible, that is when the set of chosen vertices forms a dominating set of the graph. One player (Dominator) aims to minimize the size of this se...
متن کاملPaired-domination in inflated graphs
The inflation GI of a graph G with n(G) vertices and m(G) edges is obtained from G by replacing every vertex of degree d of G by a clique Kd. A set S of vertices in a graph G is a paired dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired domination number γp(G) is the minimum cardinality of a paired d...
متن کاملDomination game critical graphs
17 The domination game is played on a graph G by two players who alternately take 18 turns by choosing a vertex such that in each turn at least one previously undominated 19 vertex is dominated. The game is over when each vertex becomes dominated. One 20 of the players, namely Dominator, wants to finish the game as soon as possible, while 21 the other one wants to delay the end. The number of t...
متن کاملUpper paired-domination in claw-free graphs
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The maximum cardinality of a minimal paired-dominating set of G is the upper paired-domination number of G, denoted by pr(G). We establish bounds on pr(G) for connected claw-free graphs G in terms of the number n of v...
متن کاملPaired domination in prisms of graphs
The paired domination number γpr(G) of a graph G is the smallest cardinality of a dominating set S of G such that 〈S〉 has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V (G)| independent edges. We provide characterizations of the following three classes of graphs: γpr(πG) = 2γpr(G) for all πG; γpr(K2 G) = 2γpr(...
متن کاملPaired-Domination in Subdivided Star-Free Graphs
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by γpr(G), is the minimum cardinality of a paired-dominating set of G. In [1], the authors gave tight bounds for paired-dominating sets of generalized claw-free graphs. Yet, ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 2
صفحات 79- 94
تاریخ انتشار 2019-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023