On vertex balance index set of some graphs
نویسندگان
چکیده مقاله:
Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper we completely determine the vertex balance index set of Kn, Km,n, Cn×P2 and Complete binary tree.
منابع مشابه
on vertex balance index set of some graphs
let z2 = {0, 1} and g = (v ,e) be a graph. a labeling f : v → z2 induces an edge labeling f* : e →z2 defined by f*(uv) = f(u).f (v). for i ε z2 let vf (i) = v(i) = card{v ε v : f(v) = i} and ef (i) = e(i) = {e ε e : f*(e) = i}. a labeling f is said to be vertex-friendly if | v(0) − v(1) |≤ 1. the vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. in this paper ...
متن کاملTotal vertex irregularity strength of corona product of some graphs
A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...
متن کاملVertex-PI Index of Some Nanotubes
The vertex version of PI index is a molecular structure descriptor which is similar to vertex version of Szeged index. In this paper, we compute the vertex-PI index of TUC4C8(S), TUC4C8(R) and HAC5C7[r, p].
متن کاملFeedback vertex set on AT-free graphs
We present a polynomial time algorithm to compute a minimum (weight) feedback vertex set for AT-free graphs, and extending this approach we obtain a polynomial time algorithm for graphs of bounded asteroidal number.
متن کاملOn computing the general Narumi-Katayama index of some graphs
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = prod_{vin V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-ve...
متن کاملOn the Wiener Index of Some Edge Deleted Graphs
The sum of distances between all the pairs of vertices in a connected graph is known as the {it Wiener index} of the graph. In this paper, we obtain the Wiener index of edge complements of stars, complete subgraphs and cycles in $K_n$.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 39 شماره 4
صفحات 627- 634
تاریخ انتشار 2013-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023